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1. Introduction

Land cover mapping and assessment is one of the core areas of
remote sensing data application (King, 2002; Foody, 2002). Land
cover is a fundamental variable that impacts on and links with
many parts of the human and physical environment (Foody, 2002).
The change in land cover is regarded as a single most important
variable of global change affecting ecological systems (Vitousek,
1994) with an impact on the environment that is at least associated
with climatic change (Skole, 1994). Despite the significant role that
land cover information plays in environmental monitoring and
understanding, our knowledge of land cover and its dynamics
especially in the rural parts of Africa is still lacking.

The lack of knowledge relating to land cover and its dynamics
especially in developing countries can be attributed to: (1) weak
government support for mapping agencies and research institu-
tions, (2) expensive software and hardware, (3) insufficient budget
allocations for data purchases and (4) resistance to changes
especially by the traditionalist in the field of mapping. However,
the increasing availability of inexpensive or free data such as that
provided by the global land cover facility (GLCF), the constant drop
in the prices of hardware and software as well as improved
awareness about the potential applications of remote sensing

technology provides the needed momentum for land cover change
assessment in the developing world. The combined use of remote
sensing and geographical information systems (GIS) will render
the essential tools for land cover mapping, storage, analysis and
modelling of future scenarios (Geneletti and Gorte, 2003).

To effectively derive reliable information from satellite data,
appropriate classification techniques are essential. A number of
classification approaches have been developed over the past
decades and a review of these algorithms can be found in Lu and
Weng (2007). The classifiers can be categorised as either common
or advanced. Some of the common classification algorithms
include the K-Means, ISODATA, MLC and minimum distance to
means (Erdas, 1999; Mather, 2004; Lillesand and Kiefer, 1999;
Sabins, 1997; Richards, 1993) while the advanced classification
algorithms include the artificial neural networks (ANN), decision
trees, support vector machines, and object based image analysis
(Lawrence et al., 2004; Mahesh and Mather, 2003; Kim et al., 2003;
Mitra et al., 2004; Verbeke et al., 2004; Foody, 1986; Lucieer, 2008;
Hay et al., 2003; Blaschke and Lang, 2006).

In this study, we explore the use of the DTs, SVMs and MLC
approaches for land cover mapping as well as assessing the land
cover changes in the rural areas of Pallisa District, Eastern Uganda. To
this end, we pursue three main objectives: (1) explore the potential
of data mining approaches for identification of suitable bands for
classification as well as determining the decision thresholds, (2)
compare the performance of the DTs, SVM and MLC and (3) assess
the land cover changes within the study area over the given period.
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A B S T R A C T

Land cover change assessment is one of the main applications of remote sensed data. A number of pixel

based classification algorithms have been developed over the past years for the analysis of remotely sensed

data. The most notable include the maximum likelihood classifier (MLC), support vector machines (SVMs)

and the decision trees (DTs). The DTs in particular offer advantages not provided by other approaches. They

are computationally fast and make no statistical assumptions regarding the distribution of data. The

challenge to using DTs lies in the determination of the ‘‘best’’ tree structure and the decision boundaries.

Recent developments in the field of data mining have however, provided an alternative for overcoming the

above shortcomings. In this study, we analysed the potential of DTs as one technique for data mining for the

analysis of the 1986 and 2001 Landsat TM and ETM+ datasets, respectively. The results were compared with

those obtained using SVMs, and MLC. Overall, acceptable accuracies of over 85% were obtained in all the

cases. In general, the DTs performed better than both MLC and SVMs.
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It is well established that the selection of a suitable classifier as
well as appropriate bands (original or derived) is essential for
improved classification accuracies (Lu and Weng, 2007). Conse-
quently, the decision thresholds used for classification have an effect
on the final outcome of the classification. Traditionally, the
thresholds are obtained using the knowledge provided by experts
who employ their expert knowledge to assess and create the
decision boundaries. However, expert knowledge required to
determine the decision boundaries is often lacking and this provides
challenges for image classification. We argue that the use of a data
mining approaches such as those implemented in WEKA software
eliminates the burden of looking for expert knowledge for
classification. Furthermore, since experts may disagree on the
decision boundaries and it is difficult to know why they disagreed in
the first place, we hypothesize that data mining approaches provide
decision thresholds that are reliable, transferable and reproducible.

2. Study area

The study area is located in Kibale sub-county in Pallisa District,
Eastern Uganda (Fig. 1). The geographical co-ordinates of the area
of interest are: lat (18110–18130) N and long (338440–338480) E with
maximum average elevation of approximately 1056 m a.s.l. The
area is characterised by mostly savannah vegetation coupled with
subsistence farmlands. The common food crops are millet, cassava,
sorghum, potatoes as well as rice while cotton constitutes the main
cash crop. Pallisa is one of the areas in Uganda known for having a
large number of wetlands and as such it is an important area for
conservation of the wetland habitat. However, over the last three
decades, Pallisa has experienced land cover changes particularly as
local people search for vacant land for cultivation. Most wetlands
have been converted into rice gardens. Therefore assessing the
land cover dynamics in this area is essential for understanding
human interaction with their environment. This will form the basis
for better planning and management of the existing resources.

3. Materials and methods

3.1. Data acquisition

Geo-referenced Landsat satellite images were accessed through
the global land cover facility, courtesy of the NASA Landsat

program. Only two datasets were available for the selected study
area, i.e. the Landsat 5 (TM) for 1986 and Landsat 7 (ETM+) for
2001. These data sets are located on the satellite path 171 and row
59. The satellite images were acquired during late November and
early January, respectively. It is generally a dry season in Pallisa
district and therefore no significant spectral differences images are
expected due to seasonal differences.

3.2. Data pre-processing

The data processing was carried out using ENVI 4.5 and ERDAS
IMAGINE 9.1 prior to analysis. After the initial visual image
analysis to confirm the agreement of the geo-referenced images, a
subset of the image was extracted to include the area of interest
and the surrounding areas. Apart from the original Landsat TM
bands, a number of derivative bands were generated from the
original data for analysis. These included the first three principle
components (PCs), the first three tasselled cap (TC) transformed
bands, normalised vegetation index (NDVI) and texture band based
on spectral variance with a 3 � 3 moving window. The analysis of
PCs showed that the first three PCs in both cases contained
approximately 97% of the scene information and the remainder of
the components with approximately 3% of the scene variance were
not used for analysis. The three TC transformed bands were chosen
since they represent the ‘‘greenness’’, ‘‘brightness’’ and ‘‘wetness’’
axes, respectively and therefore provide a measure of the presence
or absence of vegetation as well as areas with high moisture
content (Erdas, 1999). Similarly, the inclusion of the NDVI provides
a measure of the absence and presence of vegetation. The NDVI has
been used for vegetation studies especially assessing the health of
vegetation (Morawitz et al., 2005), with higher NDVI values
indicating good healthy vegetation while lower NDVI values show
deprived vegetation. The original and derived bands were
combined into a single band composite for land cover mapping.

3.3. Image classification

Image classification was performed using DTs, MLC and SVMs.
In the following subsections a brief explanation of the three
algorithms is provided.

3.3.1. Decision trees (DTs)

A decision tree classifier is a non-parametric classifier that does
not require any a priori statistical assumptions to be made
regarding the distribution of data. The process of building the
decision tree is presented in Quinlan (1993). The basic structure of
the decision tree however, consists of one root node, a number of
internal nodes and finally a set of terminal nodes. The data is
recursively divided down the decision tree according to the defined
classification framework. At each node, a decision rule is required
and this can be implemented using a splitting test often of the form

Xn

i

aixi � c for multivariate decision trees or simply xi > c

for univariate decision trees:

where xi represents the measurement vectors on the n selected
features and a is a vector of linear discriminate coefficients while c

is the decision threshold (Brodley and Utgoff, 1992). The DTs are
known to produce results of higher accuracies in comparison to
traditional approaches such as the ‘‘box’’ and ‘‘minimum distance
to means’’ classifiers but the performance of DTs can be affected by
a number of factors including: pruning and boosting methods used
and decision thresholds (Mahesh and Mather, 2003). Our study
addressed the challenges of determining the decision thresholds
using data mining approaches.Fig. 1. Location of study area.
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3.3.2. Maximum likelihood classification

A maximum likelihood classification algorithm is one of the
well known parametric classifies used for supervised classification.
According to Erdas (1999) the algorithm for computing the
weighted distance or likelihood D of unknown measurement
vector X belong to one of the known classes Mc is based on the
Bayesian equation.

D ¼ lnðacÞ � ½0:5 lnðjcovcjÞ� � ½0:5ðX �McÞTðcovc � 1ÞðX �McÞ�

The unknown measurement vector is assigned to the class in
which it has the highest probability of belonging. The advantage of
the MLC as a parametric classifier is that it takes into account the
variance–covariance within the class distributions and for
normally distributed data, the MLC performs better than the
other known parametric classifies (Erdas, 1999). However, for
data with a non-normal distribution, the results may be
unsatisfactory.

3.3.3. Support vector machines

The support vector machines (SVMs) are a set of related
learning algorithms used for classification and regression. Like
the DTs classifiers, the SVM are also non-parametric classifiers.
The theory of the SVM was originally proposed by Vapnik and
Chervonenkis (1971) and later discussed in detail by Vapnik
(1999). The success of the SVM depends on how well the process
is trained. The easiest way to train the SVM is by using linearly
separable classes. According to Osuna et al. (1997) if the training
data with k number of samples is represented as {Xi, yi}, i = 1, . . .,
k where X 2 RN is an N-dimensional space and y 2 {�1, +1} is a
class label then these classes are considered linearly separable if
there exists a vector W perpendicular to the linear hyper-plane
(which determines the direction of the discriminating plane) and
a scalar b showing the offset of the discriminating hyper-plane
from the origin. For the two classes, i.e. class 1 represented as �1
and class 2 represented as +1, two hyper-planes can be used to
discriminate the data points in the respective classes. These are
expressed as

WXi þ b� þ 1 for all y ¼ þ1; i:e: a member of class 1
WXi þ b � �1 for all y ¼ �1; i:e: a member of class 2

The two hyper-planes are selected so as not only to maximise
the distance between the two given classes but also not to include
any points between them. The overall goal is to find out in which
class the new data points fall. Overall, the SVMs are reported to
produce results of higher accuracies compared with the traditional
approaches but the outcome depends on: the kernel used, choice of
parameters for the chosen kernel and the method used to
generated SVM (Huang et al., 2002).

3.3.4. Classification scheme

The first step in the classification process was the development
of the classification scheme. The land cover classification scheme
consisting of eight main land cover classes (mixed forest, degraded
forest, herbaceous wetlands, shrub wetlands, grassland, grassland
(open), mixed farmland and water (open)) were developed based
on the Afri-cover land cover classification system (FAO, 2005). Also
prior to digital image classification, appropriate bands for
classification were determined using the C 4.5 data mining
algorithm (Quinlan, 1993). Additionally, the decision rules for
implementation using DT were generated using the same
algorithm. After the determination of the appropriate bands, a
classification was performed using MLC and SVM. In order to
minimise the biasness caused by using different band combina-
tions, the same number of bands were used for classification in
both cases.

3.3.5. Pre-processing of training and test data

Training and test data for the associated classes were delineated
based on analyst’s prior knowledge of the study area. Further pre-
processing of the training data was performed prior to analysis
using data miner. Overall, 27 instances/columns were available for
analysis, i.e. the 19 original and derived bands, land cover/land use
class definition, 6 location variables for each pixel{pixel (x, y), map
(lat, long), and map (X, Y)} and finally the identifier (ID) for each
training data point. For this study, all the location variables as well
as ID were not used for classification. As a result, the 19 original
and derived bands were used as the dependent variables whereas
the land cover classes were used as the independent variables.

The DT classifiers, i.e. number of bands and decision threshold
for each image dataset were developed using the training dataset,
by implementing the C4.5 data mining algorithm developed by
Quinlan (1993). For each land cover class, at least 50 instances/
pixels were available for analysis. A total of 768 and 643 instances
were used for the Landsat TM and ETM+ data, respectively. In order
to reduce the complexity of the tree classifies, pruning was
enforced using a confidence factor setting of 0.25. Each of the
resultant DTs were tested using the 10-fold classification
approach. Accuracies of 96.6% and 95.8% were obtained for the
TM and ETM+ datasets, respectively. The data mining approach
provided two significant results, i.e. the rules as well as the
appropriate bands for classification. Altogether, 11 and 10 bands
(original and derived) were found appropriate for the classification
of the 2001 and 1986 Landsat data, respectively. Whereas these
bands where appropriate, only the Landsat TM bands 3 and 4
where appropriate for discriminating all the classes of interest.

3.3.6. Classification

The resultant tree classifiers were used for image classification
using ENVI 4.4 software. Furthermore, the appropriate bands
derived using C4.5 data mining algorithm were used for
classification using the MLC and SVMs. The SVM classification
was performed using a well known radial basis function kernel. For
the MLC and SVM approach, the classification was performed in
two stages. In the first stage, the same numbers of bands used for
DT classification were also used for MLC and SVM classification.
However, further analysis showed that some bands were not very
significant in the DT classification. These bands were excluded in
the second classification stage. The motive was to further evaluate
whether these excluded bands had any significant impact on the
accuracy of the classification. The second classification approach
was not possible for the case of DTs classification. The results of the
classification were smoothed with a 3 by 3 majority filter to
minimise the salt and pepper appearance. The final results were
used for accuracy assessment based on the confusion matrix. A
separate data set not used for training was used for accuracy
assessment.

4. Results

4.1. Classification results

Ten land cover classification results were obtained. The six
results shown in Fig. 2 correspond to the three classifications of the
1986 and 2001 Landsat data based on the three classification
algorithms. The additional four classifications refer to the
classifications using SVM and MLC for both years based on the
modified number of bands discussed in Section 3.3.6. In the 1986
satellite image, seven classes were successfully delineated (i.e.
forest, herbaceous wetlands, shrub wetlands, grassland, grassland

(open), mixed farmland and water (open)). However, it was not
possible to identify the class ‘Water (open)’ in the 2001 satellite
image. Also the original class ‘Forest’ was replaced by a new class
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‘Degraded forest’. Results show that the study area is dominated by
subsistence ‘‘Mixed Farmlands’’.

4.2. Accuracy assessment

The classification accuracy was evaluated using the confusion
matrix. A separate but same data set was used for accuracy
assessment in all cases. The subscripts 1 and 2 in Table 1 refer to
SVM and MLC classifications based on the original appropriate
bands from the data mining algorithms and the modified
classification after further reduction of bands, respectively. The
first five columns show the results of the accuracy assessment of
the 1986 imagery whereas the last five columns are for the 2001
satellite imagery.

4.3. Land cover change assessment

Fig. 3 shows the land cover changes which are identified within
the study area. We adopted a post-classification approach for land
cover change assessment. It is however important to note that each
of the three adopted image processing techniques gave a different
area estimate. This is not surprising since the choice of the
classification techniques has an impact on the area estimate. But
since each of the approaches provided results of acceptable
accuracies, we considered all the resultant area estimates for land
cover change assessment. In our approach, we simply averaged the
area estimates from each of the classification techniques for each
year. The results were subtracted to provide the change statistic.
The results show an increase of the subsistence mixed farmlands,
grassland and degraded forest while a decrease in grassland (open)
and herbaceous wetland. The class water (open) and forest do not
appear in the 2001 satellite image.

5. Discussion

The study area considered here was one of those areas in
Eastern Uganda that were affected by insurgency for the period
1986–1992. Prior to this period, there were three small forested
areas within the sub-county head quarters of Kibale. These forests
were still identifiable in the 1986 satellite image. These were the
Okeju, Otelepai and Kibale forests. Okeju was particularly known as
an area where people were often abducted and murdered. To date,
these forests no more exist. The classification results in the 2001
satellite data confirmed this observation. The forests have been
converted to subsistence mixed farmlands due to the growing
population and need for arable land. However, during the fallow
periods these former forested areas tend to regenerate with some
characteristic features of the original forest (often tall grass and
bushes), which may appear as forested areas in the satellite image.

It is evident that the open waters have disappeared and there is
also a general decrease in the herbaceous wetlands. Most of these
areas have been converted into rice fields. December–February is
always the rice clearing and growing season in Pallisa. There is,
therefore, a possibility of these fields appearing as open grassland
(rice growing at an early stage dominated with bare ground) or
farmlands and grassland (i.e. when the fields are fully covered with
rice). The results of the accuracy assessment showed high
confusion between grassland, grassland (open) and herbaceous
wetlands.

Outside the wetland areas, most grassland areas have been
converted into farmlands. Overall, the wetlands and forest are
disappearing while the farmlands are increasing. There have been
some unsuccessful attempts to gazette wetlands in this area and
other parts of Pallisa. The wetlands provide potential for rice
growing which in fact has become both food and cash crop.

Fig. 2. Land classification with SVMs, MLC and DTs.

Table 1
Classification accuracy.

Method DTs SVM1 SVM2 MLC1 MLC2 DTs SVM1 SVM2 MLC1 MLC2

Overall accuracy 93.48 90.53 89.49 90.42 87.30 94.07 91.73 93.67 93.91 93.67

Kappa statistics 0.93 0.89 0.87 0.88 0.85 0.93 0.90 0.92 0.93 0.92
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Coupled with lack of land for most growing adults, it is envisaged
that this trend will continue unless alternative sources of income
are provided to the people.

Regarding the classification approach used, it is evident that data
mining approaches when combined with traditional digital image
classification provides potential for mapping and understanding
environmental changes. The use of suitable data miners helps in
choosing the appropriate threshold for classification as well as the
bands for analysis. This eliminates the trial and error methods often
used especially when classifying data of high dimensionality.

High overall accuracies were obtained for all the three
techniques. However, the DTs performed better in both cases.
The reduction of bands by eliminating the less appropriate bands
does not significantly decrease the accuracy of the classification as
can be observed in Table 1. Indeed for the case of SVM, there is an
improvement of the classification accuracy. This is perhaps due to
the simplification of the vector space needed for the development
of hyper-planes.

6. Conclusions

The main aim of this study was to explore the data mining
approaches for pixel based land cover classification as well as
assessing the land cover changes that have occurred in a given area
using the Landsat data of 1986 and 2001. The data mining
approach provides a lot of potential for pixel based classification
when used in conjunction with the traditional digital image
classification processes. In particular, the ability to enable the
identification of appropriate bands for classification and the
determination of decision thresholds is plausible. This methodol-
ogy provides results that are reliable, reproducible and transfer-
able. The accuracies obtained are high and therefore considered
acceptable. Also, the approach of determining land cover changes
using results from different methods is commendable since it is not
biased to a particular method. The study also concludes that land
cover dynamics is occurring at an unprecedented rate.
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