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Ground filtering is a key process to derive digital terrain models from airborne laser
scanning data. Although many methods have been developed to tackle the filter-
ing problem, it has not been fully solved so far. Current algorithms mainly focus
on neighbourhood-based or directional filtering approaches. A new object-based
analysis (OBA) method is proposed in this article. First, a grid index algorithm
accelerates access to unorganized cloud points. Then, a segmentation algorithm is
deployed based on the index, and objects are obtained. A filtering logic that uti-
lizes the objects’ characteristics is designed. Following this, the performance of the
method is comprehensively tested using publicly available International Society for
Photogrammetry and Remote Sensing (ISPRS) test data sets for nine urban and six
rural regions, and the results are compared to those of eight other algorithms. The
OBA method implemented in this article reveals good results without scene-wise
optimization of the parameters, and it ranks third or fourth in most of the cases.

1. Introduction

Airborne laser scanning (ALS) is a technology for the quick acquisition of digital ter-
rain models (DTMs) and digital surface models (DSMs) (Ackermann 1999, Sithole
and Vosselman 2004). The method is also utilized for extracting features such as
buildings (Sohn and Dowman 2007) and vegetation (Wagner et al. 2008).

As is well known, ground and non-ground back echoes are confusingly mixed in
raw ALS data. When aiming to differentiate topographic information, the basic task
of processing ALS data is to distinguish bare ground points from object points. Due
to the complexity of terrain, a full automation of the point filtering process is not
possible (Sithole and Vosselman 2004). Hyyppä et al. (2004) report from practical
tests that laser scanning data even include low points under the ground level. These
may be real returns or falsely interpreted elevation values from strong backscatters.
Therefore, the typical procedures in existing approaches require a lot of human inter-
action, which is usually labour-intensive and time-consuming. Many research articles
focus on filtering algorithms (Kraus and Pfeifer 1998, Pfeifer et al. 1999, Axelsson
2000, Vosselman 2000, Roggero 2001, Sithole 2001, Brovelli et al. 2002, Elmqvist 2002,
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7100 M. Yan et al.

Sohn and Dowman 2002, Wack and Wimmer 2002, Shan and Sampath 2005, Meng
et al. 2009). Several studies have compared the performance of different algorithms
(Sithole and Vosselman 2004, Zhang and Whitman 2005, Meng et al. 2010). Filtering
algorithms filter the raw ALS point cloud or operate on a grid elevation generated
by interpolations of points (Sithole and Vosselman 2004, Meng et al. 2009), which
can be considered a DSM (Lloyd and Atkinson 2002). Most existing algorithms work
on the assumption that the natural ground changes gradually and, as a result, that
(1) the height difference between neighbouring ALS points on the ground is small
and (2) the probability that a point accepted as a non-ground point increases with the
height difference increases between two neighbouring points.

Kraus and Pfeifer (1998) proposed an iterative linear prediction method, which
distinguishes between ground points and non-ground points by providing the points
with different weights in iterations. Axelsson (2000) developed an adaptive triangu-
lated irregular network (TIN) model, in which points below a given threshold and
within a given distance of the nearest triangle nodes are accepted in the triangle. The
model is adaptive and the threshold is changed adaptively between the iterations.
Vosselman (2000) implemented a height difference mechanism in such a way that a
point is accepted as a ground point if the height difference between the point and its
neighbourhood is not beyond a given threshold. Roggero (2001) utilized a local lin-
ear regression method in order to find the initial bare ground surface, where points
are classified as ground points or non-ground points based on their distance from
the initial bare ground surface. Sohn and Dowman (2002) proposed a TIN model,
in which the TIN is created in an iterative process, and the lowest point within the
respective triangle is accepted as a bare ground point, while the remaining points are
considered as object points. Brovelli et al. (2002) assumed that the points within a
closed boundary are considered as object points. The algorithm finds the edge and
connects the edges as a boundary. Wack and Wimmer (2002) interpolated a raster
using ALS points while subsequently detecting elements of objects with Laplacian
of Gaussian (LoG) operations in a hierarchical approach. Shan and Sampath (2005)
proposed a one-dimensional and bi-directional labelling algorithm to identify ground
and non-ground points in an urban area. Both the slope criterion and height criterion
are used in this procedure. Meng et al. (2009) developed a multi-directional filtering
algorithm to combine the advantages of directional information and neighbourhood
information.

Most of these algorithms operate at a global scale. This means that the operation
is the same no matter whether the scene is simple or complex. Further, when using
global-scale algorithms, each ALS point is treated as an individual object, which
means that most of the existing algorithms do not take full advantage of neigh-
bourhood information. For instance, in linear prediction methods, i.e. slope-based
or height-based models, filtering algorithms are applied throughout the scene with
a global threshold. In some methods, the threshold is changed adaptively during the
filtering procedure (Axelsson 2000). The morphological methods analyse the cloud
points based on regions; however, usually the analysis window size and the related
threshold should be chosen carefully or changed gradually between iterations (Zhang
et al. 2003). In addition, the morphological algorithms usually operate on grid data
derived from ALS points using interpolation; thus, errors may be introduced into the
procedure (Zhang et al. 2003, Sithole and Vosselman 2004, Meng et al. 2009).

In this article, a filtering algorithm that uses object-based analysis (OBA) is pro-
posed. First, this algorithm extracts objects from the ALS point cloud through
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Airborne laser scanning filtering by object-based analysis 7101

segmentation. Further, a topology relationship of these objects is built and the points
are analysed based on the respective objects instead of using a global scale. The algo-
rithm utilizes the structural information of high-resolution point clouds, including
topology relationship information and object information such as object size, etc.
Finally, the performance of the algorithm is tested using publicly available ISPRS test
data sets.

2. Methodology

2.1 OBA process framework

With the development of earth observation techniques, such as IKONOS, QuickBird
or GeoEye-1, the resolution of remote-sensing images has been improved dramatically.
This improvement of resolution has rendered the conventional pixel-by-pixel image
analysis unsatisfactory (Li 1996, Guo et al. 2007, Liu et al. 2008, Blaschke 2010).
Object-based image analysis (OBIA) has been a hot research field in the past decade.
OBIA methods derive objects through image segmentation and utilize many features
of the resulting objects, including size, topology and shape information. Nowadays,
commercial ALS equipment is capable of delivering high-density point clouds, where
the points can represent relatively small structures such as buildings and terrain forms
such as terraces or levees. When targeting such information, it may be beneficial to
identify existing objects, such as buildings, trees, etc. In this article, we use the term
OBA, and we will carry out ALS filtering based on OBA.

First, the original point clouds are organized by creating a grid index. Local
minimum height value points are selected as the flag points for local grid cells.
Subsequently, the segmentation and the analysis procedures are carried out based on
the grid index. In accordance with the literature, we hypothesize that the grid index
will significantly accelerate the process of finding neighbourhood points.

Second, a segmentation algorithm is developed, which begins from the flag data
points. Several key procedures are implemented in this process, including (1) seed
point generation, (2) initializing the segmentation, (3) invalid object absorption and
merging, (4) creating boundaries of derived objects and (5) creating a topological rela-
tionship between these objects. The final results are objects consisting of ALS points.
Third, several parameters are extracted from the derived objects and are used for the
subsequent filtering of these objects. In this way, objects are identified by their features,
and are eliminated from the background, which is considered as a non-terrain object.
After this procedure, the remaining points in the grid are filtered based on local flag
points by using a local slope method. The details will be discussed in §2.4.

2.2 Grid index for multi-scale analysis

Many existing algorithms operate on discrete point clouds or grid data derived by
interpolation of cloud points (Lloyd and Atkinson 2002, Sithole and Vosselman 2004,
Meng et al. 2009). Many articles point out that interpolation will cause errors in the
derived grid data (Sithole and Vosselman 2004, Meng et al. 2009). Instead of inter-
polation methods, a suitable data organization method must be utilized in order to
handle the discrete points. Several three-dimensional indexing methods exist such as
the Octree and kd-tree data structures.
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7102 M. Yan et al.

We developed the following grid index in order to organize the original point cloud;
it is used to find the neighbouring points of a given laser point. The structure is demon-
strated in figure 1. When laser points are loaded to memory, they are organized as an
array based on their IDs (‘data array’ in figure 1), and using the storage structure it is
possible to index each point by its ID with the complexity of O(1).

The grid index is like a matrix (‘grid index matrix’ in figure 1) and, for each cell
of the matrix, there is a cell array containing the IDs of all laser points that fall into
the cell. The grid position (xid, yid) of a given point (X , Y , Z) can be calculated using
equation (1). For instance, in figure 1 it is assumed that four points, a, b, c and d, are
located in the cell, marked by a red cross. In this case, there is a corresponding array
in the ‘grid index matrix’, in which the four points are organized in a cell array by
their IDs (‘cell array’ in figure 1). Then for each grid cell, the original points from the
‘data array’ are indexed by their IDs effectively. For instance from the cell array that
contains the IDs of points a, b, c and d, we could index the original laser points by
their IDs with the complexity of O(1):

xid = X − Xmin

Xsize
, yid = Y − Ymin

Ysize
. (1)

In equation (1), (Xmin, Y min) and (Xmax, Y max) describe the extent of the ALS data set.
It can be derived from the file header, for instance from the header of a LAS format
file. X size and Y size are the width and height of a grid cell, respectively, defined by

Figure 1. Demonstration of the grid index.
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Airborne laser scanning filtering by object-based analysis 7103

the user. In addition, the width (W ) and height (H) of the grid can be derived from
equation (2):

W = floor
(

Xmax − Xmin

Xsize

)
+ 1, H = floor

(
Ymax − Ymin

Ysize

)
+ 1. (2)

After these calculations, each grid cell is composed of an array containing point IDs.
If no ALS points fall into the corresponding cell, the cell remains empty. For the point
ID array of each cell, the point with the lowest Z value is chosen to represent the cell.
If the array is empty, the related cell is considered to be empty. It is emphasized that
no interpolation is conducted in this process, and we use the original information of
laser points for segmentation.

2.3 Segmentation algorithm

Segmentation is an important topic in image analysis. It can be defined as a partition-
ing process of an image into homogeneous and non-overlapping regions that are later
identified as objects (Cheng et al. 2001). Many algorithms have been developed in the
field of pattern recognition as well as in remote-sensing image analysis (Benz et al.
2004, Mitra et al. 2004, Li and Xiao 2007, Saha and Bandyopadhyay 2010).

The plethora of segmentation algorithms can be grouped into four categories
(Blaschke 2010): point-based, edge-based, region-based and combined. In this article,
the main purpose of the segmentation step is to derive partitions whose height values
change gradually. These regions are considered to be relatively homogeneous in this
respect. For this purpose, we propose an improved region-growing algorithm.

In our algorithm, we first build a grid index for neighbourhood searching, in which
only the local point of z-min value is used for the segmentation of each grid cell instead
of all the ALS points. We assume that the segmentation process is accelerated by using
the strategy of the grid index. Then by using the local point of z-min value for each
grid cell, we search for seed points of a given size in each region, which is used for seg-
mentation. We use slope as the neighbour point accepting criterion, and the searching
direction is the four-neighbour breadth-first search.

2.3.1 Generating seed points. Finding seed points is a crucial task for many existing
filtering algorithms, e.g. for the TIN model proposed by Axelsson (2000). In the OBA
approach, we consider the seed points to be local minimal height values. First, we
filter out the ‘low points’ (points under the ground level), and then, for a given grid
size C, the entire study area is partitioned into R regions. Subsequently, seed points S
are generated according to equations (3) and (4):

R = floor
(

Xmax − Xmin

C
+ 1.0

)
× floor

(
Ymax − Ymin

C
+ 1.0

)
, (3)

Si = min({Zj|j ∈ Ri}). (4)

2.3.2 Segmentation based on grid index. In §2.2, a data matrix was generated and
filled with points of local minimum z values. If S stands for the collection of seed

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
t S

al
zb

ur
g]

 a
t 0

7:
37

 2
0 

Ju
ly

 2
01

2 



7104 M. Yan et al.

points while M stands for the matrix of the point identification, then the segmentation
procedure can be demonstrated by the following pseudo-code:

M← 0
id← 0
obj_hashtable← new hashtable()
foreach(s in S) {

if(M [s]!= 0) {
id← id +1
obj← new OBJ(id)
M [s]← id
obj.accept(s)
queue.check_enter(s, s.get_4neighbour_points())
while (queue is not empty) {

p← queue.exit()
obj.accept(p)
M [p]← id
queue.check_enter(p, s.get_4neighbour_points())

}
objs_hashtable.put(id, obj)

}
}
Foreach(s in left) {

if(M [s]!= 0) {
id←id +1
obj← new OBJ(id)
M [s]← id
obj.accept(s)
queue. check_enter (s, s.get_4neighbour_points())
while (queue is not empty) {

p← queue.exit()
obj.accept(p)
M [p]← id
queue.check_enter (p, s.get_4neighbour_points())

}
objs_hashtable.put(id, obj)

}
}

The segmentation procedure begins from these seed points. First, a new object is cre-
ated with an incremental id. If a point p is absorbed as part of the object, it will be
labelled with the ID of the corresponding object. Then the four-neighbourhood points
of p are put into a queue after a criterion check. Each object is derived when its queue
is empty. Then the segmentation is carried out on the remaining points that have no
object ID. In this procedure, ‘check_enter’ is used to check whether a neighbour point
p1 (x1, y1, z1) of an accepted point p (xp, yp, zp) should be accepted as part of the
respective object. The check function is defined in equation (5):

θ = atan

⎛
⎝ |�z|√

(�x)2 + (�y)2

⎞
⎠ = atan

⎛
⎝

∣∣z1 − zp
∣∣√(

x1 − xp
)2 + (

y1 + yp
)2

⎞
⎠ . (5)
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Airborne laser scanning filtering by object-based analysis 7105

In addition, an appropriate threshold for the angle θth is required to check whether a
point should be absorbed. If θ is smaller than the given θth, the point will be accepted,
otherwise refused.

With a suitable threshold angle θth defined by the user, an initial segmentation is con-
ducted. After the initial segmentation, objects are stored in a hash table as described in
the previous pseudo-code. Then, invalid objects are identified. To do this, an algorithm
is developed to derive topologic relationships from any of the objects in the hash table
by checking the identification matrix M as described in the previous pseudo-code. The
procedure can be described as follows:

foreach(obj in objs_hashtable) {
foreach(pt in obj.all_pts) {

bdFlag← false
foreach(npt in pt.get_8neighbour_points()) {

if(obj.id!=M[npt]) {
obj.addTop(M[npt])
bdFlag← true

}
}
if (bdFlag) {

obj.boundary_pts.add(pt)
}

}
}

In this procedure, for each point p of the current object with ID1, we get its eight
neighbour points set npts if there is a point of npts whose id is not ID1, and then we
assume that the point p is a boundary point of the current object with ID1. In addition,
the topologic relationships of each object are organized by means of a hash set, which
helps to avoid multiple entries (http://www.sgi.com/tech/stl/hash_set.html).

The grid data derived in §2.2 are used in the segmentation procedure. Each grid cell
contains an array of IDs of ALS points that lie within the respective cell. However,
the array of some cells may be empty if no ALS points fall into the cell. This is caused
by the low density of ALS points or too small a cell size (X size, Y size). Due to this
problem, after the initial segmentation of the grid data, many invalid objects (just
holes) may exist and an appropriate algorithm is designed to eliminate these invalid
objects. These objects are usually small in size and are identified with an invalid object
tag in the identification matrix M if the respective grid index cells are empty. Then,
after the creation of topologic relationships, these invalid objects are absorbed by the
adjacent objects. To guarantee consistency, the topologic relationships are updated
each time these invalid objects are absorbed.

2.4 Object-based filtering

As a result of this segmentation procedure, homogeneous regions are created and
region-based analyses can be carried out. According to the OBIA theory (Liu et al.
2008, Blaschke 2010), particular features are derived from the objects and their respec-
tive geometries. Three levels of features can be obtained from the segmented parts
(Liu et al. 2008). Level one features derived from single objects include area, perime-
ter, shape, etc. (Liu et al. 2010). Level two features address spatial relations between
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7106 M. Yan et al.

two objects, such as embeddedness, proximity and adjacency. Level three features are
composed of spatial patterns in which more than two objects are involved.

In our approach, four major object characteristics are used. (1) The information
whether an object is derived from a seed point. As described in §2.3.1, seeds are gen-
erated by a local minimum search for each local search window. It assumes that if an
object originates from a seed point, it is a ground object and the remaining objects
are considered as uncertain objects. (2) Topology information: (a) an object is more
likely to be a non-ground object if it has the highest mean height value compared to its
neighbouring objects based on the derived topological relationship, while (b) an object
is more likely to be a ground object if it has the lowest mean height value compared to
its neighbours. (3) Sharp boundary points. The local maximum z-differential value is
calculated based on the four-neighbourhood case as defined in equation (6). Then, a
special edge detector is defined in equation (7). In equation (6), LMHD stands for local
maximum height differential matrix, N is the symbol for the four-neighbourhood case,
i stands for the current cell position and j stands for the neighbourhood cell position
of i. If the boundary point collection of an uncertain object contains sharp boundary
points, it is classified as non-ground object. (4) Size information: objects that are too
small are classified as tiny non-ground objects. A flow chart is provided in figure 2,
which illustrates the analysis steps:

LMHD(i) = max({∀j ∈ N, Z(i)− Z(j)}), (6)

EDGE(i) =
{

0 LMHD(i) ≤ 0
LMHD(i) LMHD(i) > 0 .

(7)

After these filtering steps, an additional process is carried out to identify the remaining
points in the grid index. Case 1: if an object is identified as a non-ground object,
then all the remaining points within the object are classified as non-ground points.
Case 2: if an object is identified as a ground object, then the remaining points within
the object are filtered using the nearest ground point based on equation (5) using the
local threshold of slope defined by the user.

2.5 Computation performance analysis

By using the grid index, there are W × H points (point with the lowest Z value of
each cell of grid index matrix) for segmentation. We assume that the total number of
laser points is N, and that the complexity for building the grid index is O (N). When
generating seed points, the complexity is O (W ×H). In this respect, our segmentation
algorithm is similar to typical region-growing algorithms; according to Shih (2010),
the computational complexity is O ((W × H) lg (W × H)). For the second step of
building topologic relationships and defining boundary points for each object, the
complexity is O (W × H).

Assuming that there are M objects after segmentation, then the com-
plexity for object-based filtering process is O (M). Usually, M is much less
than N, and therefore the total time complexity for the OBA algorithm is
O (N+W ×H + (W ×H) lg (W ×H) +W ×H +M) ≈ O ((W ×H) lg (W ×H)).
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Airborne laser scanning filtering by object-based analysis 7107

Objects derived
by segmentation

Is object derived
from

seed point?

Does object of
local minimum mean

height value?

Does  object of
local minimum mean

height value?

Calculate sharp boundary
points based on boundary
point collection of object

Does object contain
sharp boundary

points?

Is the size of object
smaller than a given

threshold?

Check local maximum/minimum
mean height value based on

topological relationship

No

No

No

No

No

Ground object Non-ground
object

Yes

Yes

Yes

Yes

Yes

Figure 2. Flow chart of the filtering logic.

3. Analysis of the ISPRS test data sets

The algorithm is implemented in C++ language. In order to test the performance
of the algorithm absolutely and relatively against other algorithms, experiments are
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7108 M. Yan et al.

Table 1. Study site features of 15 data sets from Sithole and Vosselman (2003).

Site name
Data set

name
Point spacing

(m) Special features

Urban site 1 samp 11,
samp 12

1–1.5 Steep slopes, mixture of vegetation and buildings
on hillside, buildings on hillside, data gaps

Urban site 2 samp 21,
samp 22,
samp 23,
samp 24

1–1.5 Large buildings, irregularly shaped buildings,
road with bridge and small tunnel, data gaps

Urban site 3 samp 31 1–1.5 Densely packed buildings with vegetation
between them, building with eccentric roof,
open space with mixture of low and high
features, data gaps

Urban site 4 samp 41,
samp 42

1–1.5 Railway station with trains (low density of terrain
points), data gaps

Rural site 5 samp 51,
samp 52,
samp 53,
samp 54

2–3.5 Steep slopes with vegetation, quarry, vegetation
on riverbank, data gaps

Rural site 6 samp 61 2–3.5 Large buildings, road with embankment, data
gaps

Rural site 7 samp 71 2–3.5 Bridge, underpass, road with embankments, data
gaps

carried out using publicly available ISPRS test data sets. The ISPRS data sets can be
downloaded from the ISPRS website of Commission III, Working Group 3 (http://
www.itc.nl/isprswgIII-3/filtertest/index.html). They cover seven sites and consist of
15 individual data sets. The study sites are described in table 1, which is modified
from Sithole and Vosselman (2003). Site 8 is excluded here due to the lack of reference
data.

From the ISPRS filtering report (Sithole and Vosselman 2003), Error Type I, Error
Type II and Error Total information are used to verify the performance of an algo-
rithm. Error Type I (eI), Error Type II (eII) and Error Total (eT) are defined in
equations (8)–(10). In these equations, a is the number of ground points that have
been correctly identified as ground points; b is the number of ground points that have
been incorrectly identified as non-ground points; c is the number of non-ground points
that have been incorrectly identified as ground points; d is the number of non-ground
points that have been correctly identified as non-ground points; and e is the total num-
ber of points tested. Although it is suggested by Sithole and Vosselman (2003) that
filtering should aim to minimize Error Type I because Error Type II is easier to edit
manually, most of the existing algorithms seem to pay more attention to minimiz-
ing Error Type II. For the best possible comparison to the existing algorithms, we
therefore try to minimize Error Type II.

eI = b
a+ b

, (8)

eII = c
c+ d

, (9)

eT = b+ c
e

. (10)
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Airborne laser scanning filtering by object-based analysis 7109

Table 2. Parameters for segmentation and filtering.

Data set
name

Index
size

Average number of
points in each index

cell
Window size to
find seeds (m)

Slope threshold for
segmentation (◦)

Local slope
threshold (◦)

samp 11 2 3.72 50 30 10
samp 12 2 3.85 50 30 10
samp 21 2 3.63 50 30 10
samp 22 2 3.86 50 30 10
samp 23 2 3.34 50 30 10
samp 24 2 3.38 50 30 10
samp 31 2 4.09 50 30 10
samp 41 2 2.43 50 30 10
samp 42 2 3.68 50 30 10
samp 51 3 1.61 50 45 15
samp 52 3 1.47 50 45 15
samp 53 3 1.52 50 45 15
samp 54 3 1.55 50 45 15
samp 61 3 1.41 50 45 15
samp 71 3 1.61 50 45 15

All parameters such as sizes and thresholds used in these tests are illustrated in table 2.
The index size parameter is used to build the grid index, which is set according to the
density of ALS point clouds. Then, the average number of points in each index cell can
be calculated. The seed points are found according to the given window size defined by
the user. Usually, the size of a window should exceed the size of the largest buildings
within the study area. The segmentation is carried out based on the slope threshold.
This local slope threshold is used to filter the remaining points after the initial filtering
of objects through the segmentation process. We do not optimize this parameter for
every site. It is kept constant in order to test the stability of our algorithm. Errors of
type I, type II and type Total are calculated and the results are illustrated in table 3
and figures 3–5.

Table 3. Error Type I, Error Type II and Error Total.

Data set name Error Type I (%) Error Type II (%) Error Total (%)

samp 11 28.87 5.71 20.62
samp 12 11.43 1.62 7.12
samp 21 7.14 4.96 6.76
samp 22 15.8 2.11 11.98
samp 23 27.92 2.31 16.59
samp 24 28.44 3.43 22.47
samp 31 5.56 1.88 4.02
samp 41 27.27 0.85 14.02
samp 42 9.39 3.2 5.18
samp 51 6.77 6.4 6.69
samp 52 11.63 7.65 11.2
samp 53 19.08 4.08 18.5
samp 54 14.67 2.0 7.85
samp 61 11.72 0.84 11.35
samp 71 16.05 3.13 14.59
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Figure 3. Error distribution for urban sites 1–4 displayed on the same scale.

4. Results

The nine urban test sites are relatively flat; however, they are composed of a complex
mixture of land use and many buildings (figure 3, samp 11, samp 12, samp 21–samp
24, samp 31, samp 41 and samp 42). The spacing of the laser points in these nine
urban regions is about 1 m. In our algorithm, the size of the grid index is set to 2 m.
This results in typically three to four points for each grid index cell. In order to test the
robustness of our algorithm, we apply the same slope segmentation threshold for all of
these regions. As it can be observed in figure 3, most of the filtering results in these sites
are very satisfactory. Large buildings in samp 12, samp 22, samp 31, samp 41 and samp
42 are filtered out. In samp 11, samp 23, samp 24 and samp 41, Error Type II needs
to be improved. This means that in these regions, several ground points are classified
as non-ground points. Remarkable is samp 11, where the scene is complex with steep
slopes and a mixture of vegetation and buildings on hillsides. The comparison to the
eight existing algorithms reveals better results. Problems arise for two samples: in samp
23 and samp 41, large buildings exist; however, in our algorithm, some ground areas
are rejected. We interpret this to be due to the rule of the sharp boundary points.

For the six rural regions (figure 4, samp 51–samp 54, samp 61 and samp 71), the
density of laser points is much lower than that of the nine urban regions. In order to
be able to index enough points in each grid index cell, we apply a 3 m grid size for the
grid index in each of these samples. There are about 1.5 points for each grid index cell.
As seen in table 3 and figure 4, most areas are well classified. This is especially true for
samp 53, samp 54 and samp 61. Although there are many break lines in samp 53, the
OBA algorithm still seems to be appropriate to be applied to this region.
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Figure 4. Error distribution for rural sites 5–7 displayed on the same scale.

As mentioned earlier, the results produced by the eight existing algorithms for these
test sites are documented in Sithole and Vosselman (2003). We compare our new algo-
rithm to these existing algorithms with regard to three different aspects: Error Type I,
Error Type II and Error Total. As can be concluded from figures 5–7, the OBA method
implemented in this article seems to achieve good results without parameter optimiza-
tion. Figure 5 demonstrates that Error Type I is generally very different between all
nine algorithms (the eight existing algorithms plus the OBA algorithm). All algorithms
encountered problems with samp 41 and samp 53, while for all other samples, the
errors are very diverse. Figure 5 also reveals that the algorithm of Axelsson (2000)
performs best in most cases, while the OBA algorithm typically ranks third or fourth.
Figure 6 shows that the algorithm of Roggero (2001) achieves good results for samp
22, samp 23 and samp 24, and especially for samp 21. On the contrary, the errors of
the Axelsson algorithm change for these particular samples compared to Error Type I.
The OBA algorithm ranks third or fourth in most of the cases. However, the results of
samp 11, samp 21 and samp 52 need to be improved.

With regard to Error Type II, shown in figure 6, the results need to be improved
for several of the test data sets, for instance for samp 21 and samp 52. However, we
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Figure 5. Comparison between existing algorithms and OBA methods of Error Type I.
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Figure 6. Comparison between existing algorithms and OBA methods of Error Type II.

do not apply any scene-wise optimization of the parameters for our algorithm. If we
were to optimize the parameters for each data set separately, even better results would
be achieved. We assume that it is usually difficult to find optimized parameters for
practical DTM generation without reference data sets and without having particular
applications in mind. Finding optimized parameters is usually labour-intensive and
time-consuming. In this test, we use only two different settings for the pre-defined
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Figure 7. Comparison between existing algorithms and OBA methods of Error Total.

urban and rural test data sets. In summary, we can state that the OBA algorithm
delivers very stable results in respect to Error Type I, Error Type II and Error Total
(see figures 5–7).

5. Conclusions

Filtering is a very important task in ALS data processing. Although several methods
tackle this problem, we conclude that it has not been fully solved. Most of the existing
algorithms use a global scale and are in need of iteration. We developed a new filter-
ing method based on OBA, which can utilize information derived from objects rather
than from individual points. From the tests conducted using the ISPRS data sets, we
conclude that the OBA algorithm is stable and yields good results without parameter
optimization. With increasing laser point density, more and more structural informa-
tion can be revealed and used to identify objects. We conclude that with a further
increase in point densities, the OBA method becomes even more advantageous.

We tested our algorithm on various ISPRS data sets and compared it to eight exist-
ing algorithms. An analysis of the results revealed several advantages of our algorithm.
First, based on the grid index, our algorithm could tackle high-density cloud points,
for instance, the Riegl laser equipment, which could obtain the point cloud with a
high density of 40 points m−2 (http://www.riegl.com/nc/products/airborne-scanning/).
With our algorithm, we were able to process the cloud points at different resolu-
tion levels. Second, the new algorithm managed to utilize the information of derived
objects, including topology, size, boundary and other shape information; therefore,
it can derive more information from original point clouds than the methods based
on points. Third, our algorithm can obtain more results from original point clouds,
not only ground points or DTM. For instance, as illustrated in figure 8, the OBA
algorithm can derive the boundaries of buildings, which could be used for building
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Figure 8. Building boundary extraction based on OBA method.

extraction. Finally, the OBA algorithm produces stable results in most of the cases
without parameter optimization and iteration. The results reveal the potential of the
OBA method for the filtering of ALS point clouds.
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