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ABSTRACT 

The progress in image data mining over the last years is 
significant but barely known in the GIScience 
community. Conversely, data mining methods rarely 
make use of existing spatial information. This paper 
describes a methodology to extract particular knowledge 
from spatial data. First step is to define a generic rule set 
similar to a supervised classification. Metainformation 
such as the bounding box of an image or the image 
centroid is straightforwardly utilized to automatically 
derive information from Spatial Data Infrastructures 
(SDI). The rule sets are then applied to other images 
taken by the same sensor through automated 
adjustments according to the metadata. We demonstrate 
the degree of automation for two ASTER images, one 
from Kashmir and one from Zimbabwe based on a 
worldwide data set of biogeographic regions. This 
successful blind test illustrates the potential to directly 
utilizing SDIs within a remote sensing data 
classification process. 
 
 

1. INTRODUCTION 

Remote sensing has become an essential data source for 
many operational tasks ranging from environmental to 
homeland security applications. No other survey 
technique can operationally provide such a regularized 
survey for assessing landscape patterns and change. 
However, remotely sensed images, like all observations 
of reality, are an imperfect capturing of patterns, which 
are themselves an imperfect mirror of the underlying 
processes. Some problems inherent in representing the 
Earth’s surface are due to the central idea of arrays of 
‘pixel’ units [13]. Cracknell [8] explores the question 
“What’s in a pixel?” and makes the point that a pixel 
(the ‘footprint’ or ground instantaneous field of view, 
GIFOV) of a sensor is often larger than we would like it 
to be, a penalty imposed by the technology in return for 
the ability for the sensor to give an overview of a very 
large area. Unfortunately, sensor GIFOV were often 
imposed on us by technological or logistical constraints 
and not based on the needs of a particular application 
nor on hypotheses about the objects being explored. 
Increasing spatial resolution does not automatically 
resolve these problems. In some respects it shifts the 

scale or ‘window of perception’ [18]. Only recently, 
imaging methods and GIS-based spatial data analysis 
techniques are combined to constructing spatial data 
bases. In our methodology we dissect the complex task 
into two major steps while first developing a rule set. 
This step is not much different from supervised 
classification except that we build on image objects 
derived from segmentation and that we use relative 
values easily adoptable to any other scene. The rule sets 
reflect specific meta-information from the data sets to 
be classified. Building on objects rather than on pixels 
allows to obtaining and storing the revealed information 
and the associated spatial data in various forms 
including discriminant rules, prominent structures, 
spatial associations or topological relationships. In the 
entire process chain segmentation is a critical link and a 
sound methodology for guidance is indispensable. We 
will elaborate on this in the next section.   
 

2. METHODOLOGY 

Spatial data mining has gained significant progress over 
the last years [10], especially beyond single images, e.g. 
in regard to multi-temporal images [29, 9]. The 
enormous amount of data recorded today exceed both 
human’s and machine’s ability to analyze these. Only 
recently, data mining approaches have extended the 
scope of data mining from relational to transactional 
databases to spatial databases. This paper provides a 
somewhat different view compared to the ‘mainstream’ 
in the information extraction community. Firstly: rather 
than starting from the pixel perspective we put emphasis 
on objects. Secondly, we do not regard a remotely 
sensed image as completely ”new” or detached from 
any existing information, e.g. about the area or other 
areas of the same biome, the same elevation range, or 
the same predominant general land cover. We 
hypothesize that in the 21st century there will always be 
auxiliary information available. Potential frameworks 
for an intelligent exploitation of existing geoinformation 
are spatial data infrastructures (SDI).  
 
The term SDI is often used to denote the relevant base 
collection of technologies, policies and institutional 
arrangements that facilitate the availability of and 
access to spatial data. A spatial data infrastructure 



 

provides a basis for spatial data discovery, evaluation, 
download and application for users and providers within 
all levels of government, the commercial sector, the 
non-profit sector, academia and the general public. The 
word infrastructure is used to promote the concept of a 
reliable, supporting environment, analogous to a road or 
telecommunications network. Spatial data infra-
structures facilitate access to geographically-related 
information using a minimum set of standard practices, 
protocols, and specifications. Spatial data infrastructures 
are commonly delivered electronically via the internet. 
 
The kind of information obtained from SDI is usually 
meta-information. Therefore, we develop a 
methodology to utilize spatial databases according to 
standardizations of SDI’s. Some good examples of 
linking satellite imagery and web portals are realised in 
various application areas already. For instance, to 
support relief efforts for natural disasters, such as 
floods, earthquakes, hurricanes, etc., the capability to 
look at potential problem areas affected is a feature of 
several Web services. In the US, the National Map 
Hazards Data Distribution System provides a dynamic 
online map interface that can be used to view USGS 
data sets that are part of The National Map 
(http://gisdata.usgs.net/website/Disaster_Response/). Other 
examples include the National Disaster Hazard and 
Vulnerability atlas in South Africa [26]. Still, to the 
knowledge of the authors, these applications include 
images as graphical components but do not analyse or 
interpret them according to the need of the respective 
applications. We claim that a fast incorporation of 
information extraction results into national or regional 
data sets would be a great asset to these web services. 
 
Cracknell [8] divides his critical examination of the 
‘pixel’ into geometry, mixed pixels, point spread 
functions and resampling, and concludes that the ‘pixel’ 
is a more complicated entity than is generally 
acknowledged, and we must approach landscape 
analysis using EO data critically. Increasing spatial 
resolution does not solve this problem but decreases the 
effects of the ‘mixed pixel’ problem. Depending on the 
objects of interests and the target scales of analyses this 
may lead to the fact that the ‘pixel problem’ may be 
more and more neglectable, at least statistically. 
 
The traditional method for analysing EO data in 
landscape research is the classification of pixels based 
on neighbourhood in spectral feature space. Put 
differently, one assumes that the classes are relatively 
pure or at least spectrally separable. Although not 
always a statistically sound method (the widely-used 
maximum likelihood classifier assumes normal 
distribution of data, which is unlikely in EO images), 
the methodology is considered to be successful. 
However, the reference to land cover classes is 

instructive, because with GIFOV of 1 km to 30 m, only 
the broadest land cover classes can be spectrally 
differentiated. Separability has been improved by the 
incorporation of spatial information, such as local 
measures of texture and autocorrelation, but is not 
assuaged. Spectral separability aside, there is still 
problems and the scale issue is just one example. A final 
complication to the pixel approach is the conceptual 
error. This error arises from errors in the design of the 
classification system that is generated for the landscape 
analysis. Finally, the pixel-centred view is usually uni-
scale in methodology, exploring the pixels of only one 
scale of imagery and of only one scale within the image.  
 
A variety of techniques have been proposed to wrestle 
the pixel approach into addressing pixel vs. ecological 
object discontinuities [7]. These include spectral 
‘unmixing’ using linear mixing models, and the use of 
fuzzy sets and neural nets. However, by ignoring 
concepts of hierarchy and scale in the landscape 
processes driving pattern creation, these approaches are 
still overly pixel-centred. They adhere to a concept of 
the pixel as a spatial entity [13] that is assumed to have 
a de facto relationship to objects in the landscape. Uni-
scalar, pixel-based monitoring methodologies have 
difficulty providing useful information about complex 
multiscale systems. If we accept that the reality we wish 
to monitor and understand is a mosaic of process 
continua, then our landscape analysis must make use of 
methods which allow us to deal with multiple, yet 
related scales within the same image and with multiple 
images.  
 
The multiscale segmentation/object relationship 
modelling (MSS/ORM) methodology suggested by [7] 
segments information (usually remote sensing images 
plus any georeferenced information). Generally, an 
advantage of segmentation to classification of pixels is 
that the resulting division of space tends to involve 
fewer and more compact subregions. The multiscale 
segmentation based approach is designed to utilize 
information in the scales inherent in our spatial (image) 
data sets in addition to a range of auxiliary data sets, 
including for airborne and satellite data, but also to the 
scales of information inherent in single images. 
Technically, segmentation is not new [17] but only 
since around the year 2000 we can observe a rapidly 
increasing number of applications with is often 
associated with the advent of commercially available 
high resolution satellite imagery (Ikonos: 1999) and a 
commercial software package for object-based image 
analysis – eCognition – [2], today developed further 
into Definiens Software and Definiens Cognition 
language [27]. The idea behind is to somehow mimic 
how a human operator works: to create regions instead 
of points or pixels as carriers of features which are then 
introduced into the classification stage. The conceptual 



 

idea is that each of these regions corresponds exactly to 
one and only one object class. Furthermore, 
segmentation algorithms are able to handle multiple 
data and information sources, thus performing a fusion 
on feature level [12]. Over the last very few years, many 
new segmentation algorithms and applications have 
been tested in GIScience applications. Increasingly, 
methodological developments and qualitatively 
convincing results are reported [3, 5, 15, 2, 25] and a 
new research field called object-based image analysis 
(OBIA) has emerged [22, 4]. 
 
The strong motivation to develop techniques for the 
extraction of image objects stems from the fact that 
most image data exhibit characteristic texture which is 
neglected in common classifications, although scientists 
started to tackle this problem already in the 1970ies [21, 
16]. In addition to spectral aspects in images, GIS 
principally introduces topology as a new dimension to 
map the relations between n-dimensional entities. We 
speak of objects if we can attach a meaning or a 
function to the raw information. Generally, the object is 
regarded to be an aggregation of geometric, thematic 
and topologic properties. The topologic relations 
between the object can be examined once the user has 
defined his or her objectives, classification scheme and 
scale of analysis. For a recent overview on image 
segmentation for remotely sensed images we refer to 
[5], while [25] provide a comparison of software 
products.  
 
Most researchers applying a segmentation approach 
argue that image segmentation is intuitively appealing. 
Human vision generally tends to generalize images into 
homogeneous areas first, and then characterize focal 
areas more carefully as required [14]. Following this 
observation, we hypothesize that by creating multiple 
scales of segmentation, by successively grouping the 
pixels of an image into homogeneous image objects, a 
more intuitive and hierarchical partitioning of the image 
results. Among the most promising are Markov image 
segmentation, multi-fractals based segmentation [30], or 
segmentation based on representativeness measures 
[20]. 
 
In this paper we use the region-based, local mutual best 
fitting segmentation approach [1] as being implemented 
in the software eCognition [2] which developed recently 
into Definiens software. Methodologically, we build on 
the MSS/ORM approach [6] as described above. The 
procedure for the multi-scale image segmentation 
presented is a region merging technique. It starts with 1-
pixel image objects. Image objects are pairwise merged 
one by one to form bigger objects. In this 
conceptualisation the procedure becomes a special 
instance of an assignment problem, known as pairwise 
data clustering. In contrast to global criteria, such as 

histogram threshold procedures, decisions are based on 
local criteria, especially on the relations of adjacent 
regions considering a given homogeneity criterion. 
 
The collecting of semantic relationships brings up the 
issue of a priori knowledge. For some landscape 
situations, it has been hypothesized that for different 
scenes the similarity of object scales and object 
characteristics will enable nearly automated and highly 
accurate classification of land-use, land cover or 
vegetation. To achieve this, these analysis systems will 
have to optimize the data collected and the relationship 
rules applied. Urban landscapes are an example and the 
use of 3D models from LIDAR scanning or digital 
stereo orthophotography combined with spectrometer 
data is likely to achieve useful results. The varieties of 
objects in a more natural landscape add additional 
challenges, and the importance of semantic (human) 
knowledge of each particular scene may play a more 
important role in these studies.  
 

3. CASE STUDY 

In the empirical part we demonstrate the incorporation 
of external spatial databases in the classification 
process. In cooperation with a commercial company we 
could already demonstrate that objects created from a 
multi-resolution segmentation can further be flexibly 
broken down to pixel-sized objects and rebuilt to 
meaningful objects based on knowledge derived from 
the super objects: utilizing a priori knowledge about the 
specific scale domain of the target features is proposed 
[28]. In this paper we now go one step further: we use a 
sort of a priori metadata to calibrate our rule sets due to 
different natural conditions, as a result of the explicit 
spatial location of the target area. The concept is 
illustrated in figure 1. 
 
In this study we use an existing dataset of terrestrial 
ecoregions of the world [24] as a data base and as a 
starting point for image analysis and automatical 
extraction of vegetated areas. For a first attempt we 
focussed on biomes (formally known as Major Habitat 
Types or MHTs) which  are broad kinds of ecoregions 
that (1) experience comparable climatic regimes, (2) 
have similar vegetation structure, (3) display similar 
spatial patterns of biodiversity, (4) contain flora and 
fauna with similar guild structures and life histories, (5) 
have similar minimum requirements and thresholds for 
maintaining certain biodiversity features (6) have 
similar sensitivities to human disturbance.  
 



 

 
Figure 1: Workflow for biome-specific automated image 
analysis, integrating a-priori spatial information and 
satellite imagery. 
 
In this study 14 terrestrial biomes are used to 
automatically derive specific variable thresholds 
according to the geographical location of the satellite 
images (figure 2).  
 

 
Figure 2: Biomes of the world as a-priori knowledge 
 
For two test sites we developed a rule set which uses the 
Biomes information automatically to set NDVI 
thresholds for a vegetation classification based on 
ASTER images (level 1b registered radiance at sensor, 
VNIR, with 15m GSD). Only the three VNIR nadir 
bands (green, read, NIR) are used. The areas are part of 
the test cases used in the EU network of excellence 
GMOSS1 and cover parts of Kashmir (Muzaffarabad) 
and parts of Zimbabwe (Banket region). Both images 
are Level-1B products (registered radiance at sensor), 

                                                           
1 Global Monitoring for Security and Stability 
(http://gmoss.jrc.it) 

acquired in October 2005 (Kashmir) and June 2006 
(Zimbabwe).  
 
The rule sets for segmentation and classification are 
developed using CNL (Cognition Network Language), 
which is a sort of programming environment available 
in Definiens Developer software. CNL provides the 
opportunity to automatically include thematic 
information into the rule sets. The biome dataset serves 
as a thematic layer. In a first part, the rule set is defined. 
This process is not much different from any supervised 
classification except for that we build on segments 
rather than on pixels and that we store values in 
variables which can later be adopted to the respective 
values of other scenes. A prerequisite is a common 
geographic reference system (here: WGS 84). 
 
Then, the biome dataset is automatically clipped to the 
extending of the input image data. The Biome Type of 
the map is now automatically bundled with the image 
data. By means of combining Branching and Looping 
algorithms in CNL the biome type of the target area is 
translated into different NDVI thresholds, which are 
allocated to variables used in the classification 
algorithm. Figure 3 shows a subset of the rule set where 
loops over all image objects are querying the underlying 
biome type and define the individual NDVI threshold 
for each object.   
 

 
 
Figure 3: Branching/ Looping algorithm in CNL 
translating biomes into variables holding NDVI 
thresholds which are automatically used in the image 
analysis. 
 
Preliminary results for the ASTER scene of the Kashmir 
region are shown in figure 4. The Kashmir scene is 
covering 3 different biomes types (Tropical & 
Subtropical Coniferous Forests, Temperate Broadleaf & 
Mixed Forests, Montane Grasslands & Shrublands) 
resulting in different classifications for each biome type.  
 
In a blind test we applied the rule set without any 
changes to the ASTER image in Zimbabwe. This image 
is covering only one biome type (Tropical & 
Subtropical Grasslands, Savannas & Shrublands). We 



 

used the same rule set for both images – changes 
concerning NDVI thresholds are automatically 
performed based on the image statistics derived.  
 

 
 

 
Figure 4: Classification of vegetated areas in Kashmir 
(upper image) and Zimbabwe (below). For both images 
the same rule set is used –changes concerning NDVI 
thresholds are automatically performed by reading 
biome type information from a georeferenced map 
(upper left and upper right). 
 
 

4. DISCUSSION 

This example demonstrates a first, yet operational 
approval of our methodology. We extracted vegetated 
areas to explain the usefulness of using pre-knowledge 
in image analysis. The approach can easily be adopted 
to a range of other, even more complex or manifold 
tasks. Instead or in addition of using ecoregions it is 
also possible to use DEM data, geological data, climatic 
maps, population data and the like as pre-knowledge 
information. Likewise it is going to be a big potential 

and a huge research task for the near future to 
systematically prove whether metadata of the satellite 
images (date, time, inclination etc.) can be automatically 
read into the system. This first attempt definitely 
encourages to proceed and to invest more work.  
 
The approach is very different from the approaches in 
data mining and specifically in image information 
mining. It is a combination of a supervised selection and 
pre-definition of complex rule sets and an automation 
approach of information extraction. It is important to 
note that it is not knowledge free. But we believe that 
there is huge demand for such a combined way to derive 
information “semi-automatically” in a sense that a 
sophisticate rule set is created in a supervised stage and 
then applied un-supervised in an automated fashion. 
This may complement recent developments in image 
information mining. Clearly, this test demonstrates only 
a small aspect of the possibilities of integrating meta-
information in the automation of classification or 
feature extraction procedures. We have also 
successfully developed a methodology to classify 
landforms from digital elevation models [11] and we are 
currently translating these models into the cognition 
network language to automate the process further.  
 
The results are promising, especially concerning the 
problems which occurred in earlier studies on object-
based delineation of single trees. These new possibilities 
are extending a software package to a sort of modular, 
process oriented programming language. Consequently 
the research taken herein can illuminate one aspect of a 
new and complex context-based classification 
methodology. This reflects our theoretical approach 
described earlier and opens ways for a hierarchical 
description and subsequent classification of whole 
landscapes.  
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