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Abstract

This paper presents an automated classification system of landform elements based on object-oriented image analysis. First, several
data layers are produced from Digital Terrain Models (DTM): elevation, profile curvature, plan curvature and slope gradient. Second,
relatively homogenous objects are delineated at several levels through image segmentation. These object primatives are classified as
landform elements using a relative classification model, built both on the surface shape and on the altitudinal position of objects. So far,
slope aspect was not used in classification. The classification has nine classes: peaks and toe slopes (defined by the altitudinal position or
the degree of dominance), steep slopes and flat/gentle slopes (defined by slope gradients), shoulders and negative contacts (defined by
profile curvatures), head slopes, side slopes and nose slopes (defined by plan curvatures). Classes are defined using flexible fuzzy
membership functions. Results are visually analyzed by draping them over DTMs. Specific fuzzy classification options were used to
obtain an assessment of output accuracy. Two implementations of the methodology are compared using (1) Romanian datasets and (2)
Berchtesgaden National Park, Germany. The methodology has proven to be reproducible; readily adaptable for diverse landscapes and
datasets; and useful in respect to providing additional information for geomorphological and landscape studies. Amajor advantage of this
new methodology is its transferability, given that it uses only relative values and relative positions to neighboring objects. The
methodology introduced in this paper can be used for almost any application where relationships between topographic features and other
components of landscapes are to be assessed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Information about landforms is necessary, for exam-
ple for landscape evaluation, suitability studies, erosion
studies, hazard prediction and various fields of landscape
and regional planning or land system inventories. The
classic ways to incorporate relief units into a landscape
assessment is to delineate them during field survey or
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E-mail address: lucian.dragut@sbg.ac.at (L. Drăguţ).

0169-555X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomorph.2006.04.013
using stereo aerial photographs. This approach is rela-
tively time-consuming and the results depend on
subjective decisions of the interpreter and is, therefore,
neither transparent nor reproducible. Terrain analysis is
seldom addressed in landscape ecological research even
if topography is a key variable in a wide range of envi-
ronmental processes (Bates et al., 1998; Butler, 2001).
Still, this landscape level perspective is important and
key to a variety of ecological questions which require the
study of large regions and the understanding of spatial
pattern. For example, landscape pattern may influence
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the spread of disturbance (e.g. Turner, 1990; Forman,
1995; Butler, 2001), the horizontal flow of materials
such as sediment or nutrients (cf. Dalrymple et al., 1968)
and other ecologically important processes such as net
primary production, water quality (e.g., Hunsaker et al.,
1992; Wondzell et al., 1996) and the monitoring and
maintenance of environmental quality and biodiversity
(Gordon et al., 1994; López-Blanco and Villers-Ruiz,
1995; O'Neill et al., 1997).

Landscape-level phenomena are also receiving in-
creasing attention as questions of global change become
more prominent. Therefore, methods to analyze and in-
terpret landform heterogeneity at broad spatial scales are
becoming increasingly significant for ecological studies.
Landscape metrics or indices are frequently used to assess
structural characteristics of landscapes and to monitor
change (Turner, 1990; Forman, 1995; Fry, 1998; Griffith
et al., 2003). The increasing availability of high resolution
satellite imagery leads to a growing number of landscape
research applications using remote sensing and GIS
(Florinsky, 1998; Walsh et al., 1998; Ehlers et al., 2002).
Integrating satellite, aircraft and terrestrial RS systems to
achieve a scale-dependent set of observations can be
achieved through operational systems and current tech-
nologies. Still, most applications do not adequately em-
brace the 3-dimensionality of landscape features. This
paper aims to contribute to a more accurate incorporation
of the third dimension of landscapes. We report on a
methodology for the automatic classification of morpho-
logical landforms using geographic information systems
(GIS), object-based image analysis and digital terrain
models (DTM).

In the past, manual methods have been used for clas-
sifying macro morphological landforms from contour
maps. Hammond's (1964) procedure has, to a certain ex-
tent, become a de facto standard. Dikau et al. (1991)
developed a method which automates Hammond's man-
ual procedures using GIS. In this paper, we build on these
ideas and develop them further in two ways. First, we
extend the classification category feature set by introduc-
ing neighborhood relationships and topological functions.
Secondly, we use relative elevation values and fuzzy rules
for the classification systems because landform classifi-
cation is very sensitive to the operational definition used.
We will discuss the problems of accuracy assessment of
geomorphic elements. The classification system is built
on expert knowledge stored as a priori rules in a semantic
network and is designed to be used by non-expert users,
and which is easily adapted for specific applications.
Based on a literature surveywe compare ourmethodology
to existing digital geomorphologic classification method-
ologies and we suggest that the main enhancements are:
a) the reduction of human errors by eliminating manual
classification steps, b) the facilitation of comparisons of
results derived from different datasets, and c) the reduc-
tion in processing time (Irvin et al., 1997; MacMillan et
al., 2000; Romstad, 2001).

2. Material and methods

2.1. DTMs and digital geomorphologic analysis

The choice between form and processes as a basis of
landform classification is a matter of debate amongst
geomorphologists. Morphogenetic and morphodynam-
ic criteria are extensively used in geomorphology for
mapping and classification. Examples of these types of
application are the ITC system of geomorphological sur-
vey (Verstappen and van Zuidam, 1968) and Dollinger's
(1998) approach to delineate landscape units for planning
purposes. Christian and Stewart (1953) proposed a dif-
ferent approach, built on the physiographic aspect of land.
In fact, the interaction between form and process is the
core of geomorphology (Evans, 1998) and form charac-
teristics are key components of geomorphological sys-
tems (Ahnert, 1998). An extensive review on this subject
is provided by Lane et al. (1998), who underlined the
importance of the form in the relief assessment for a
variety of purposes.

Geomorphometric properties have been measured
manually for decades (Horton, 1945; Hammond, 1954,
1964; Verstappen and van Zuidam, 1968; Christian and
Stewart, 1953) and later methods involved a derivation
from topographic maps; a labor-intensive task. Digi-
tal terrain analysis evolved about 30 years ago. Evans
(1972) first introduced an integrated system of geomor-
phometry. Since then important progress was achieved
in improving DTM accuracies (see Lane et al., 1998),
developing new algorithms and new software to cal-
culate terrain derivatives. Among the well known al-
gorithms are those developed by Peucker and Douglas
(1975), Heerdegen and Beran (1982), Bauer et al.
(1985), Zevenbergen and Thorne (1987), Costa-Cabral
and Burges (1994) and Tarboton (1997). Many have
been implemented into industry standard GIS software,
such as ESRI products, while others were packaged in
stand-alone programs, including MICRODEM (Guth,
1995), LandSerf (©Wood, 1996–2002, http://www.soi.
city.ac.uk/~jwo/landserf/landserf180/), TOPMODEL
(Beven, 1997), TAPES set (Wilson and Gallant, 1998),
DiGeM (©Conrad, 2000–2002, http://www.geogr.
uni-goettingen.de/ pg/saga/digem/) and TauDEM (©Tar-
boton, 2002, http://moose.cee.usu.edu/taudem/taudem.
html).
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During the last two decades the availability of DTM
data has been continuously growing, data accuracy has
improved, and additional algorithms have been de-
veloped to derive new attributes from gridded DTMs
(Burrough et al., 2000). Increasingly, GIS allow for 3-D
analysis for large areas, however methodological ap-
proaches towards comparable geomorphologic classifi-
cation systems are still rare. More recent developments
include cluster analysis methods using generalization
algorithms (Friedrich, 1996; Romstad, 2001) or applying
fuzzy logic to relief data (Irvin et al., 1997; De Bruin and
Stein, 1998; Burrough et al., 2000; MacMillan et al.,
2000). Some of the approaches were designed to iden-
tifying certain features types, e.g. linear or circular forms
(Cross, 1988; Parrot and Taud, 1992), or specific forms,
e.g. mountains (Miliaresis and Argialas, 1999; Miliar-
esis, 2001) hill tops (Tribe, 1990), landslides or strike
ridges (Chorowicz et al., 1995) or other features (Tang,
1992; Walsh et al., 1998). Many methods are aiming for
the characterization of hillslope forms (Dikau, 1990;
McDermid and Franklin, 1995; Irvin et al., 1997;
Burrough et al., 2000; MacMillan et al., 2000; Urban
et al., 2000). Methodologically, most approaches are
based on the analysis of pixels and a two by two or three
by three neighborhood analysis.

Expanded feature sets (e.g. spectral channels from
scenes of different dates or derived spectralmeasures such
as vegetation indices) are today more or less routinely
generated for the classification process. It is relatively
common to use topographic derivatives from the DTMs,
for example slope, aspect, profile curvature, plan cur-
vature, topoclimatic index and slope length (see Flor-
insky, 1998). Thesemay be used as inputs to classification
processes or in a post-classification layering approach to
interpret and label defined spectral clusters. For exam-
ple, Walsh et al. (1998) use a topoclimatic index, known
elevation ranges for plant communities, to classify spec-
ific landforms. Shary et al. (2002) developed a conceptual
system of types of 12 curvatures which avoids empha-
sizing grid directions. A successful surface parameterisa-
tion is necessary for a flexible terrain taxonomy by
providing the information with which to classify land-
form. Geomorphometric classification of terrain has
tended to be either into ‘homogeneous regions’ (e.g.
Dalrymple et al., 1968; Speight, 1976; Dikau, 1989;
López-Blanco and Villers-Ruiz, 1995; Schmidt and
Dikau, 1999; MacMillan et al., 2000) or the identi-
fication of specific geomorphological features as dis-
cussed before. In particular, the problem of scale of
both spatial extent and resolution make single objective
classifications of landscape at least problematic, maybe
unfeasible.
2.2. Geomorphometry and GIS-based terrain
classification

GIS programs today incorporate techniques for the
examination of spatial and non-spatial relationships be-
tween spatial objects. These relationships may be ana-
lyzed and quantified with respect to a large range of
parameters including Euclidean distance, neighborhood
relationship, and topology. In the mid-1970s, Collins
(1975) was already discussing different algorithms that
could be used to identify features such as hill crests,
depression minima, watershed or depression boundaries
and areas, storage potential of watersheds, slope, and
aspect. With the increasing availability of commercial
GIS and digital databases in the 1980s, significant ad-
vances have been made to identify specific features and/
or to classify landforms (Weibel and deLotto, 1988;
Dikau, 1989;Weibel and Heller, 1991; Dikau et al.,
1991; Chorowicz et al., 1995; Walsh et al., 1998). Many
processes for identifying these parameters are now stan-
dard functions within a desktop GIS.

Researchers have developed routines for automatic
landform extraction and classification for a variety of ap-
plications. For example, Barbanente et al. (1992) de-
veloped routines for automatically identifying ravines and
cliffs. These are not features that can be justifiably in-
cluded in a general landscape classification methodology
because of the need to generalize. Several research groups
have developed methodologies to extract terrain features
from Digital Terrain Models (e.g. Gardner et al., 1990;
Graff and Usery, 1993; Chorowicz et al., 1995). Dikau
(1989) developed an approach to identify plateaux,
convex scarps, straight front slopes, concave foot-slopes,
scarp forelands, cuesta scarps, valleys and small drainage
ways, and crests. Many of these landform features are,
however, at the nano- or microscale. Their derivation is
appropriate for applications such as avalanche tracking,
the exploration of karst phenomena or studying gully
erosion. These landscape features are too detailed for
regional to national landscape classifications. Other phe-
nomena occur across several scales or along a scale
continuum. For instance, debris flows can occur at scales
ranging frommicro-scale flows a few centimeters inwidth
and several meters in length, through intermediate scale
features to massive sturzstroms that leave behind deposits
sufficient to impound kilometer-long lakes (Walsh et al.,
1998). In addition, many approaches are often very spe-
cific and tailored for a single application only.

We identify a need for the classification of landforms
at a meso- to microscale aiming to cover large areas and
being relatively easily applicable to other data sets. Data
availability and GIS advances have made 3-D analysis
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operational even for large areas, however methodolog-
ical approaches formalizing a comprehensive GIS-based
geomorphologic classification system are still missing.
As briefly discussed, most existing classification
systems are very specific. With the advent of worldwide
datasets (e.g. Shuttle Radar Topography Mission) and
ubiquitous access to GIS the demand for generic and
transferable classification systems grows. It is necessary
to determine how GIS-based parameters can be used for
identifying and classifying landforms. The identification
of parameters (parameterization) is an essential first step
in identifying landforms.

2.3. Delineating homogeneous landscape objects

The need for tangible landscape objects is increasing
as pressure increases on land managers to adopt com-
prehensive landscape planning, nature conservation and
resource management tasks. Pike (2000) calls the
landscape-level classification of landscape structure an
emerging application compared to other areas in geomor-
phometry. Basically, most existing approaches rely on
remote sensing techniques among which unsupervised
methods (e.g. cluster analysis) have gained supremacy in
landform elements or land facets classification. Even with
enhanced cluster analysis methods, such as the incor-
poration of generalization algorithms (Friedrich, 1996;
Romstad, 2001) or the application of fuzzy logic to re-
lief data (Irvin et al., 1997; De Bruin and Stein, 1998;
Burrough et al., 2000; MacMillan et al., 2000), pixel-
oriented approaches are limited (Blaschke and Strobl,
2001). A multivariate analysis of pixels does not include
topological relationships of neighborhood, embeddedness
or shape information of the object that a pixel belongs to.
One of the few examples which go beyond pixels is the
approach using terrain facets (Rowbotham and Dudycha,
1998) calculated from combinations of DTM-derived
slope, aspect and curvature.

Today, per-pixel analyses are often criticized, as
Blaschke and Strobl (2001) and Burnett and Blaschke
(2003) point out. It is believed that object-based image
analysis is needed to extend landscape analysis beyond
pixel classifications and taking into account the sizes,
shapes and relevant positions of relevant objects (Blas-
chke and Strobl, 2001). Therefore, we introduce object-
based analysis and classification for geomorphologic
applications. The maturation of the concept of object-
based image analysis and its implementation in com-
mercial software packages are premises for develop-
ing enhanced techniques to classify the geomorphologic
elements. The shift from per-pixel-based to object-based
analysis requires a shift from pixels having meaning to
user-defined objects having meaning. Technically, this
requires that groups of pixels be aggregated in the raster
domain according to user-prescribed rules of homogene-
ity. This aggregation is most often achieved using image
data segmentation techniques. Image segmentation is not
new (Haralick and Shapiro, 1985) but only a few of the
existing approaches are widely available in commercial
software packages. The segmentation routine must pro-
duce qualitatively convincing results while being robust
and operational. In this paper, an image segmentation al-
gorithm developed by Baatz and Schäpe (2000) is used to
derive landform object candidates and subsequently land-
form objects. The segmentation approach was designed
for use with remotely sensed (spectral) data but may also
be used for terrain information (Miliaresis and Argialas,
1999; MacMillan et al., 2000; Miliaresis, 2001; Strobl,
2001; Blaschke and Strobl, 2003).

To delineate objects based on geomorphometry we
build on the hypothesis that the Earth's surface and its
model, a DTM, are decomposable. The decomposing of
a landscape's hierarchical structure through multi-scale
analysis is an important part of landscape analysis and
O'Neill et al. (1986) recommend the use of three hie-
rarchical levels as a minimum in analytical studies. Most
approaches adhere to a concept of the pixel as a spatial
entity that is assumed to have a de facto relationship to
objects in the landscape. Uni-scale, pixel-based monitor-
ing methodologies have difficulty providing useful
information about complex multi-scale systems. If we
accept that the reality we wish to monitor and understand
is a mosaic of process continuums, then our analysis must
make use of methods which allow us to deal with multiple
yet related scales within the same image andwithmultiple
images of landscape. Burnett and Blaschke (2003) pro-
vide a five-step methodology to decompose, model and
classify spatial entities based on multi-scale segmentation
and object relationship modeling. Hierarchical patch
dynamics (HPD) is adopted as the theoretical framework
to address issues of heterogeneity, scale, connectivity and
quasi-equilibriums in landscapes. In this paper, we apply
this methodology to DTM information using the eCogni-
tion© object based image analysis software (Baatz and
Schäpe, 2000; Flanders et al., 2003). We ‘build’ topo-
morphologic objects in the multi-scale segmentation step,
delineating areas of relative homogeneity within the
spatial layers of topographic variables such as slope and
curvature.

2.4. Classification of landform elements

Many approaches in digital geomorphology aim
to delineate watershed catchments and sub-catchments
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with standard procedures (Gardner et al., 1990) or a
specific algorithm from the broad palette available
(Wilson and Gallant, 1998). In our approach, the ba-
sic geometric entities are relatively homogeneous with
respect to their slope gradient and slope curvature char-
acteristics. The resulting objects are input for the clas-
sification process in an integrated GIS/image processing
software environment. The handling of complex land-
forms including structural (topological) and hierarchical
information is only partly realized in current GIS.
Schmidt and Dikau (1999) identified a need for research
to develop open, object-oriented and easy-to-use pro-
gramming tools in GIS. Our methodology uses the
following layers of information: profile curvature, plan
curvature, slope gradient, altitude, and an additional
layer with relative values of altitude. These layers are
input to a multiscale image segmentation procedure
developed by Baatz and Schäpe (2000). We adopted as a
starting point a nine class system from the work of Dikau
(1989). He distinguished nine topological/morphologi-
cal classes based on combinations of convex, straight
and concave profiles (Fig. 1). These are all theoretically
possible combinations of landform elements relative to
plan and profile curvatures. However, four of these
classes are less likely to occur in a real landscape (e.g.
landforms with concave profile and convex plan cur-
vatures). Thus, we choose to consider five main classes
Fig. 1. Classification of landforms on the basis of plane and profile curvature
contact. Arrows indicate possible combinations in classification. (modified a
(indicated with numbers 1 to 5 in Fig. 1), assigning the
other four as classes with different possible degrees of
membership to one or more of the main classes (as
indicated by arrows in Fig. 1). We supplement these five
Dikau-based classes with another four, irrespective of
curvature values, producing a total of nine classes. The
four new classes were derived from slope gradient
parameterization and on an additional parameter, a local
dominance criterion. The dominance criterion is based
on the relative altitudes of all neighboring objects.
Objects are characterized as dominant forms (‘peaks’)
which are higher than their neighbors, or dominated ones
(‘toeslopes’) which are lower then all of their neighbors.
Slope gradients less than 2° are defined as “flat areas”,
while higher than 45° as “steep slopes”. These two
values are the only “crisp” values in the classification
system. The rest of the classification system is based on
fuzzy rules.

Mixed elements are reclassified to different main
classes, depending on their curvature values, both in
plan and in profile. The fuzzy logic rules like those built
into eCognition facilitate this flexible classification. For
instance, elements with straight profile, but convex plan
are classified as side slope if the convexity value is
close to zero, or as nose slopes when this value is far
away from this value. Landforms with concave profile
and convex curvatures or vice versa are more complex,
. 1. Nose slope; 2. Side slope; 3. Head slope; 4. Shoulder; 5. Negative
fter Dikau, 1989).



Table 1
Parameters directly used in landform classification (ND—not defined)

Landform element Morphometric feature (directly defined)

No. Name Description Curvature (1/m) Slope
(°)

Altitude

Profile Plan

1 Peak Dominant
surfaces

ND ND ND Higher than
neighbors

2 Shoulder Convex
element

+ − or±0 ND ND

3 Steep
slope

ND ND N45 ND

4 Flat or
gentle
slope

ND ND b2 ND

5 Side
slope

Rectilinear
slope

±0 ±0 ND ND

6 Nose
slope

Convex
slope

+ + ND ND

7 Head
slope

Concave
slope

– – ND ND

8 Negative
contact

– + or ±0 ND ND

9 Toeslope Flat, bottom
position

ND ND b2 ND
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allowing four different assignments in accordance with
specific value combinations.

The nine classes described in Table 1 are structured in
a hierarchy (Fig. 2) and grouped into similar object
classes. The landform classification consists of three
hierarchical levels. At the highest level, uplands, mid-
lands and lowlands were set up using a relative altitude
Fig. 2. Class h
criterion. We used relative altitudes because one of the
aims of our research was to develop a classification
system applicable to different datasets and being trans-
ferable. Technically, this criterion was applied using an
additional image layer which contains the altitude val-
ues normalized to 8 bit data. The results are relative
altitude values between 0 and 255. In this way the
classification system becomes independent of specific
datasets. It was not used in the segmentation process, but
it is used in the classification process as an additional
layer for neighborhood relationship definitions. Based
on relative altitudes, the membership functions were set
up in a simple and flexible manner, as illustrated in
Fig. 3. Thus, each object is included in a given class
following its membership value and no specific thresh-
olds are needed. Since the classification system is hi-
erarchically built, these classification rules are also
inherited by the lower level classes.

The intermediate level of the class hierarchy includes
chiefly flat areas and slopes (Fig. 2). Besides these, the
parent class Upland comprises one more child class,
namely Peaks, and in the Lowland category Toeslope
replaces flat areas (Fig. 2). Flat areas were defined by a
slope gradient less than 2°. Toeslopes were defined
using the same membership function, but spatial super-
position between flat areas and Toeslopes is hindered by
rules inherited from their parent classes. Finally, Peaks
were defined by calculating the degree of dominance
over neighboring objects. The rate of lower value area is
computed by dividing the sum of shared border length
of the object to be classified and its neighbors with
ierarchy.



Fig. 3. Membership functions to classify uplands, midlands and
lowlands.
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lower altitudinal values by the total border length of the
same object (Eq. (1)). The output values range between
0 and 1, where 1 expresses a total dominance over the
neighbor objects (i.e. the object does not share a border
with any objects with a higher altitude).

LVA ¼
P

N
aN ;bO
P

N
aN

; ð1Þ

where:

P

N
aN sum over all neighbors

aN relative border length shared by the object to be
classified and its neighbors

O altitude value of the object to be classified
Fig. 4. Location of the Romanian study areas: A. Relative to the
At the lowest level, landforms were then defined using
a combination of relatively simple and transparent fuzzy
membership functions (Table 1). Only the most relevant
terrain attributes for a given class were used in class
definition to avoid conflicts between fuzzy rules in clas-
sification. For instance, curvatures and slope gradient
were not included in definition of the class ‘peak’ (ND in
Table 1) since they are core to other classes.

3. Case studies

The methodology was tested in two geomorphologi-
cally different areas. Study area 1 comprises two com-
munities from the Transylvanian Plain in central area of
Romania (Fig. 4). The second study area is located
within the German part of the Eastern Alps. The two
Romanian communes are located in a hilly region with
altitudes between 270 and 620 m, and slope gradients
under 45°. Dominant geologic features are sediments of
the Neogene, with large extension of clays and sands.
The Unguraş commune covers a surface of 63.6 km2.
The second commune, Ţaga, extends over 100.8 km2.
As input datasets we created DTMs interpolated from
digitized 1:50000 contour maps, by applying ArcGIS
contour line-based TIN generation (for technical discus-
sion, advantages and limitations see e.g. Wise, 1998).
The output spatial resolution is 46 m for the Unguraş
and 57 m for Ţaga datasets, respectively.

For the second study area, the Berchtesgaden Nation-
al Park, Germany (Fig. 5), which covers 210 km2, a
DTMwith 5 m spatial resolution and additional data sets
national territory; B. Relative to the Transylvanian Plain.



Fig. 5. Location of the German study area.
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were made available courtesy of the Berchtesgaden
National Park administration. The Berchtesgaden study
area stretches from about 620 m above sea level (Lake
Königssee) to 2710 m (peak of the Watzmann) within a
horizontal distance of just a few kilometers, and exhibits
extreme morphological variations, including a wide
variety of geomorphological alpine forms.

Several segmentation parameters were tested to create
object primitives according to both spatial features and
derivatives values. These objects are defined to maxi-
mize between-object variability and minimize within
object variability for user-chosen inputs. For the re-
sulting segmentation level, the user specifies a unitless
‘scale parameter’. Layers containing objects of different
sizes can be created as appropriate. For homogeneity, the
user chooses the relative weight to be applied to color
versus shape criteria; 0.7:0.3 was used here (the sum
must total 1.0), emphasizing the importance of within
object heterogeneity over the shape of the resulting
features. Within the shape parameter settings, smooth-
ness and compactness parameters were weighted equal-
ly. These settings assure relatively ‘natural’ boundaries
for resulting segments, avoiding both fractal shapes and
artificially compressed objects. Equal weights were as-
signed to the four input bands (profile curvature, plan
curvature, slope gradient and altitude).

In the segmentation algorithm used (Baatz and Schäpe,
2000), the ‘scale parameter’ is a measure of the maximum
change in total heterogeneity that may occur when mer-
ging two image objects in a stepwise process. Internal-
ly, this value is squared and serves as the threshold which
terminates the region-merging segmentation process.
When a possible merge of a pair of image objects is
examined, a fusion value for the objects is calculated and
compared to the squared scale parameter. The color cri-
terion (in our case values for slope gradient, curvature, etc.)
is the change in heterogeneity that occurs when merging
two image objects, as described by the change of the
weighted standard deviation of the derivatives values
regarding their weightings. The above-mentioned ‘shape
parameter’works in a similar fashion: the shape criterion is
a value that describes the enhancement of the shape with
regard to two different models describing ideal shapes.
Adjusting the scale parameter indirectly influences the



Table 2
Statistics of the image object primitives

Study area No. of objects Avg. object size (pixel) Avg. no. of neighbors

Scale parameter Scale parameter Scale parameter

300 200 30 10 300 200 30 10 300 200 30 10

Berchtesgaden 158 280 5711 36858 – – 728.9 112.9 5.3 5.5 5.89 5.9
Ţaga 27 52 1018 6247 – – 1826 297.6 5.27 5.4 5.88 5.92
Unguraş 41 55 806 4399 – – 1322 242.3 4.63 4.9 5.84 5.91
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average object size: a larger value leads to bigger objects
and vice versa. Additionally, the influence of shape as well
as the image's channels on the object homogeneity can be
adjusted. During the segmentation process all generated
image objects are linked to each other automatically.

For both the Romanian and German data sets, four
layers of segmented objects were generated using scale
parameters of 300, 200, 30 and 10. The outputs were
visually analyzed by draping them over the DTMs of the
study areas. Statistics of the resulting image object prim-
itives were also compared (Table 2). The scale parameter
of 30 seems to be the best compromise between getting
‘meaningful’ segments and avoiding an over-segmenta-
Fig. 6. Image objects primitives draped over the DTM of the Unguraş comm
b. Scale parameter = 10 (right).
tion which produces a scattered classification. It is dif-
ficult to evaluate the meaningfulness of the segmentation
level and this is the most crucial part of using the al-
gorithm of Baatz and Schäpe (2000). In this study it is
done by comparing the results at the respective levels with
dissecting the terrain manually through interpretation and
the level of best agreement is chosen. The corresponding
scale parameter results in segments which delineate me-
dium landforms well, although sometimes one object
might belong to two or three types of slopes, especially in
terms of plane curvature (Fig. 6a, object 1). These short-
comings are drastically reduced when high resolution
DTMs are used (Fig. 6, bottom-left). Larger objects would
une (top), and Berchtesgaden (bottom). a. Scale parameter = 30 (left);
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be more suitable to extract toeslopes, but at a greater level
of heterogeneity all other segmentswill lose theirmeaning
as medium-sized landforms. The chosen level of homo-
geneity is regarded as the best compromise between
producing too small objects and objects being so large
that they belong to several landforms at once (Fig. 6b,
object 2).
Fig. 7. 3-D visualization of landform classification in
4. Results and discussion

The data obtained from the classification were directly
integrated in a GIS software. Landform types were vi-
sually analyzed by draping them over DTMs of study
areas (Figs. 5 and 6). As Blaschke (2002) pointed out, the
results of DTM processing are difficult to quantitatively
the area of the Unguraş commune, Romania.
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verify because of the lack of ground truth data for
geomorphologic features beyond altitude. Obviously, the
geomorphic categories resulting from this type of
classification coincide with the topographic surface, and
so describe the geomorphology of both study areas well.
There are small differences in regard to the object sizes
between the datasets from the hilly region (Fig. 7) and the
mountainous region (Fig. 8). These differences are caused
by the spatial resolution of datasets (46 and 57 m versus
5 m), but more significantly by the difference in topo-
graphic complexities. It seems likely that spatial com-
plexity is more important than spatial resolution but this
has to be investigated in more detail in further research.

Based on the visual analysis we observed that over-
segmentation (characterized by segments with a relatively
low mean size) produces a scattered classification, and
that further generalization is required. This has been
observed in other studies (Friedrich, 1996; MacMillan
et al., 2000; Romstad, 2001; Wielemaker et al., 2001).
The problem is particularly acute when high resolution
datasets are examined; even visual differentiation of ob-
jects becomes difficult (Fig. 6, bottom-right). Rather than
using filtering techniques, we used the generalization
Fig. 8. 3-D visualization of landform classification of the Berchtesga-
den area. Steep slopes defined by a slope gradient higher than 45° (top)
and higher than 60° (bottom).
potential of the segmentation process. Unlike a filter, it
does not necessarily neglect small forms. Since the homo-
geneity criterion of the segmentation procedure from
Baatz and Schäpe (2000) is based on the minimization of
the resulting heterogeneity of the objects, some small
objects will remain differentiated as their neighbors
coalesce if they are spectrally distinct from their
neighbors. By “distinct” we mean that the object's mean
values of the used parameters (profile curvature, plan
curvature, slope gradient, altitude and relative altitude) are
significantly different from neighboring objects. This
way, a relatively uniform slope or valley bottomwill result
in fewer and larger objects than, for example, an upland
area characterized by abruptly changing terrain and strong
gradients. If both phenomena occur next to each other—
large, relatively uniform slopes and small ridges or dikes,
both types will be reproduced in the segmentation
process. This is especially observable for the study area
of Berchtesgaden and the 5 m DTM; while the seg-
mentation procedure works as a generalization process for
the relatively uniform slope areas despite their ‘within-
patch variation’, very distinct forms such as avalanche
paths or moraines are preserved even if they are very
small, sometimes only consisting of a couple of dozen
pixels while the larger units consist of a couple of hundred
to a few thousand pixels.

It is important to note that using our methodology
no object is left unclassified. This is achieved through
overlapping fuzzy membership functions which produce
for every object one membership value per class rather
than one finite classification result per object. Still, the
accuracy assessment in an object-based classification is
crucial and no standard procedures exist in comparison
with per-pixel approaches (Flanders et al., 2003;
Blaschke, 2003). At this stage of research the classifica-
tion accuracy was assessed based on specific fuzzy clas-
sification options but we believe that more work needs to
be done to improve it. Thus, we analyzed the ‘best clas-
sification result’ and the ‘classification stability’. The
latter is a measure of the difference of the first and second
choice in the classification process, and the corresponding
membership functions, respectively. In other words, how
much more accurate is the most likely class for a given
object compared to the second choice? Both indices
resulted in high values for both study areas, expressing a
high stability of the classification results. Constant am-
biguities in classification have been noticed only between
classes defined by the same membership function but
belonging to different parent classes in the class hierarchy,
or between flat areas and peaks. In the last situation,
objects which dominate surrounding areas but having
very low slope gradient values will be classified as flat
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areas. That is a more suitable option as shape information
should reflect the spatial characteristics of geomorpholo-
gic processes.

Most automated approaches (e.g. Dikau et al., 1991;
Irvin et al., 1997; De Bruin and Stein, 1998) are very
dependent on critical thresholds specified for different
parameters. For example, an 8% slope threshold is used
for flat areas and gentle slopes, and particular bound-
aries are chosen for the component class intervals. Poor
transferability is also generally stated for most pixel-
based remote sensing classifications (Townshend et al.,
2000). Conversely, robustness is enhanced for object-
based classifications, since criteria such as object shape
and neighbor-based classification rules and the use of
fuzzy rules is less dependent on absolute values of
altitude, slope gradient and curvature (Blaschke and
Strobl, 2001; Ehlers et al., 2002; Flanders et al., 2003).
The ease of modifying protocols enables object-based
algorithms to perform more accurately than other tech-
niques when transferred from one geographical area to
another. By using relative values, the same classification
model is transferable between datasets from various
geomorphologic regions.

Moreover, our methodology is applicable to a wide
range of possible uses. It is flexible for specific adap-
tations. Membership functions can be modified for spe-
cific purposes such as: assessment of the risk of avalanches
(Copland, 1998; Bebi et al., 2001), evaluation of land
suitability (Martinez Beltrán, 1993), landscapemonitoring
and conservation (Gordon et al., 1994; Blaschke, 2002),
soil mapping (Wielemaker et al., 2001). There may be also
opportunities for research in urban areas using highly
detailedDEMs to support flood potential, slope instability,
ecology, settlement, and land use issues and decision-
making. Such an example of “tweaking” of the rules is
provided in ` 6; because of the large share of steep values
in the Berchtesgaden area DTM, the classification was
additionally run with different values of slope gradients in
order to visualize the shapes of slopes with gradients be-
tween 45° and 60°. This required only very minor changes
in the classification system.

The fuzzy classification approach proposed here
allows for soft transitions of the classes and avoids crisp
thresholds. This is necessary since the initial calculations
of the curvature and slope values use a neighborhood
analysis window which is defined by its radius. Conse-
quently, the resulting data layer used in the classification is
relatively sensitive to changing the methods or the param-
eters. As is well known from the literature (Skidmore,
1989; Schmidt and Dikau, 1999), this typically causes
differences in slope and aspect values. Fuzzy rules are less
sensitive to the absolute values and the underlyingmethod
to calculate slope and curvature (Irvin et al., 1997; Bur-
rough et al., 2000; MacMillan et al., 2000).

Slope aspect was not used in the segmentation nor in
the classification process but this data layer exists, and
within the eCognition software every object has its
mean or median exposition and other statistical para-
meters calculated and stored in an object database. For
specific ecological applications this information can
easily be utilized. The reason for not employing it in our
methodology is that aspect produces an additional zona-
tion, for instance when the aspect of hillslopes changes
from south to west or north to east. This zonation makes
the outputs too confusing. Moreover, north-facing slopes
are artificially split due to the great difference between
pixel values (e.g. 1 and 360°). So far, we have not found a
solution to these shortcomings. Including slope aspect in
the classification is a priority in further work as this
representation of the land surface is usually very impor-
tant for species-specific geo-botanical mapping and for
slope stability studies.

We have also tested the behavior of the classification
system, running it many times over the same dataset. For
every run, the classification results were identical, de-
monstrating that our fuzzy rule-based classification sys-
tem assures reproducible outputs. Up to now it was
applied only to hilly and mountainous regions, as results
from case studies in flat areas have not yet been evaluated.
For very flat areas this methodology will certainly find its
limits. Automatic classification of landform units allows
for a fast assessment and comparison of landscapes over
large areas. This makes it possible to develop monitoring
and rapid response (near real-time) applications for hazard
mitigation and security management.

5. Conclusions

Many existing geomorphometry approaches aim for
the identification and/or extraction of discrete landforms,
such as drainage basins and barchan dunes, by focusing
on specific surface shapes. There are fewer generically
applicable methodologies addressing the geometry of
continuous surfaces such as agricultural fields, abyssal
hill complexes, deformed sea ice and other terrains that
require a statistical characterization. We have demon-
strated that our methodology is applicable over two very
different terrain types, and using different data sets in
terms of DTM and ancillary data spatial resolution.

The classification results are reproducible and com-
parable between various datasets. Geomorphology and
computer modeling has become inextricably linked
through developments in computer cartography and GIS.
Application examples include land erodibilitymodeling or
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modeling the soil erosion potential. Typically, indices,
based on the topography, rainfall and soil type, and spatial
distributions are represented on various GIS layers.
Studying geomorphic processes from graded or cyclic
perspectives may be enhanced with future developments
in scientific visualization. There has been a lot of work by
geomorphologists and hydrologists using GIS to auto-
matically extract terrain information from digital data-
bases. Dikau (1989), Weibel and deLotto (1988), Dikau et
al. (1991), Tang (1992), Chorowicz et al. (1995), Brabyn
(1996), Wood (1996) and Schmidt and Dikau (1999) have
discussed different aspects of this type of research. All
these authors conclude that terrain information is impor-
tant for landscape classifications.

Given the increasing pressure on natural resources and
rising landscape monitoring obligations on the one side,
and diversity of recent advances in quantitative surface
characterization (Pike, 2000) on the other, we argue that
an automated landform classification methodology will
become central tomany ecological applications, including
soil resource modeling, landslide hazards, sea-floor and
desert geomorphology. The methodology introduced in
this paper can be used for almost any application where
relationships between topographic features and other
components of landscapes are to be assessed (e.g. natural
risk assessment). In this way, we hope to redress the lack
of land-surface curvatures in earlier approaches (Flor-
insky, 1998). This is connected with an underestimation
of the role of topographic variables indicated in the for-
mation and development of plant cover.

As stated earlier, image segmentation methods were
first developed about 20 years ago, but since that time
have not been used extensively in remote sensing ap-
plications. Early models of object-based image classifi-
cation faced obstacles in fusing information from
multilevel analysis, validating classifications, reconciling
conflicting results, attaining reasonable efficiency in
processing (time and effort), and automating the analysis
(Flanders et al., 2003). They were also limited by hard-
ware, software and interpretation theories. Pixel-based
analysis provided reasonably satisfactory results and
remained the industry standard for a long time. Advanced
pixel-based processes such as texture measurements,
linear mixture modeling, fuzzy sets and neural network
classifiers were invented to enhance per-pixel image
analysis (Blaschke and Strobl, 2001). In this paper, we
have demonstrated that a multiscale image segmentation/
object relationship modeling methodology (MSS/ORM,
cf. Burnett and Blaschke, 2003) can also be efficiently
used for geomorphometry and terrain classification. The
rapid development of geomorphometry runs parallel to
that of computer technology, chiefly GIS, image proces-
sing and DTMs. New and enhanced terrain data, such as
the high-resolution global DTMs from satellite missions
(e.g. ASTER DEM or SRTM), from photogrammetry or
LiDAR data will stimulate fresh applications and increase
the number of locations where morphometry can be used.

Of course, the limitation of this method should be
emphasized too. Although slope aspect is included as a
data layer within the eCognition software, this parameter
was not used in segmentation or in the classification
process so far. Since it is a key variable for a wide range
of space-related applications, this issue is a priority in
future work.
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