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a b s t r a c t

Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in

combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria

decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran.

Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of

nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated

with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria

for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in

the development of a landslide susceptibility map. Finally, a landslide inventory database was used to

validate the LSM map by comparing it with known landslides within the study area. Results indicated

that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high

level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides

within our study area fell within zones classified as having “very high susceptibility”, with the further

31% falling into zones classified as having “high susceptibility”.

& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Landslides are destructive natural hazards that frequently lead

to loss of human life and property, as well as causing severe

damage to natural resources (Intarawichian and Dasananda, 2010;

Feizizadeh and Blaschke, 2013a). Landslide susceptibility mapping

(LSM) is considered to be an effective tool for understanding these

natural hazards and predicting potential landslide hazard areas

(Feizizadeh and Blaschke, 2013a), thereby mitigating their

impacts. LSM addresses how likely a terrain is to produce slope

failures, with susceptibilities expressed cartographically in maps

that portray the spatial distribution of future slope-failure sus-

ceptibility (Lei and Jing-feng, 2006; Feizizadeh and Blaschke,

2013a; Feizizadeh et al., 2013a).

LSM requires a multi-criteria approach and high levels of

accuracy and reliability in the resulting maps, in order to be

relevant for decision making and the design of disaster manage-

ment plans. The effectiveness of decision making is clearly

dependent on the quality of the data used to produce the landslide

susceptibility maps, as well as on the method used for decision-

making analysis. GIS-based multicriteria decision analysis (MCDA)

is considered to be an important spatial analysis method in the

decision-making process that allows information derived from

different sources to be combined (Feizizadeh and Blaschke, 2001).

GIS-based MCDA is an intelligent approach to converting spatial

and non-spatial data into information that can, together with the

decision maker’s own judgement, be used to assist in making

critical decisions (Chen et al., 2010; Sumathi et al., 2008; Gbanie

et al., 2013). GIS based MCDA provides a collection of powerful

techniques and procedures for dealing with decision-making

problems and for designing, evaluating, and prioritizing possible

alternative courses of action (Feizizadeh and Blaschke, 2013a,

2012; Feizizadeh et al., 2012). GIS integrated with MCDA methods

provide a framework within which to handle different aspects of

the various elements of a complex decision-making problem, to

organize the various elements into a hierarchical structure, and to

study the relationships between these different components of the

problem (Malczewski, 2006).

Methods of MCDA can be subdivided into Multiple Attribute

Decision Making (MADM) and Multiple Objective Decision Making

(MODM) (Malczewski, 1999a). Even though the distinction is

derived from two specific meanings: attribute and objective, of
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a generic term: criterion (pl. criteria) the dichotomy of MCDM goes

beyond the semantics of criterion. The MADM approach requires

that the choice (selection) be made among decision alternatives

described by their attributes, where criteria are derived from

attributes. MADM problems are assumed to have a predetermined,

limited number (tens or hundreds) of decision alternatives.

Accordingly, in this paper we focus on multiple criteria evaluation

of land units and their susceptibility to landslides. Multiple criteria

evaluation involves a set of quantifiable spatial criteria, their

standardization functions, techniques for expressing preferences

regarding the relative importance of the criteria, and aggregation

rules combining quantified criterion preferences with standar-

dized criterion values into an overall evaluation score. This

procedure makes multiple criteria evaluation especially attractive

for integration with GIS for the purpose of solving spatially-

explicit land allocation/land use problems (Carver, 1991;

Jankowski, 1995; Malczewski, 2004; Chakhar and Mousseau,

2008; Chen and Paydar, 2012).

An analytic hierarchy process (AHP) is one of the GIS-MCDA

methods which have been successfully applied to many decision

maker systems (Lai, 1995). In spite of AHP’s popularity, the method

is sometimes criticized for its inability to adequately handle

the inherent uncertainties and imprecisions associated with the

mapping of a decision-maker’s perception to crisp numbers (Chen

et al., 2011). The AHP's pairwise matrix is based on expert opinion

and thus introduces a degree of subjectivity when used to make

comparison judgments. Any incorrect perception of the roles of

the different criteria on behalf of the expert can consequently

easily be conveyed into the assignment of weightings (Kritikos and

Davies, 2011; Feizizadeh and Blaschke, 2013b). AHP can be

integrated with fuzzy logic methods in order to deal with this

source of uncertainty and to provide a framework for further

analysis that makes use of the advantages of fuzzy membership

functions (FMFs) to assess criteria and improve the accuracy of the

results.

Fuzzy sets have been applied in the context of MCDA in order to

standardize criterion maps by assigning to each object a degree of

membership or non- membership of each of the criteria (Jiang and

Eastman, 2000; Gorsevski and Jankowski, 2010). Combining an

AHP with fuzzy set theory permits greater flexibility in the

assessment of results and the subsequent decision making.

A fuzzy-AHP (FAHP) retains many of the advantages enjoyed by

conventional AHPs, in particular the relative ease with which it

handles multiple criteria and combinations of qualitative and

quantitative data. As with an AHP, it provides a hierarchical

structure, facilitates decomposition and pairwise comparison,

reduces inconsistency, and generates priority vectors. Finally, an

FAHP is able to reflect human thought in that it uses approximate

information and uncertainty to generate decisions (Kahraman et

al., 2004). These characteristics qualify the use of an FAHP as an

appropriate and efficient tool to assist with making complex

decisions in environmental management (Vahidnia et al., 2009).

Fuzzy set theory employs a membership function that

expresses the degree of membership value with respect to a

particular attribute of interest. The attribute of interest is generally

measured over discrete intervals and the membership function

can be expressed as a table relating map classifications to

membership values (Pradhan, 2010; 2011a, b). Fuzzy logic is

straightforward to understand and to implement, and has been

successfully integrated with GIS-MCDA. GIS-based MCDA can be

used together with fuzzy set theory to model imprecise objectives

in a variety of research areas (Chang et al., 2008; Yonca Aydin et al.,

2013), especially for landslide susceptibility mapping purposes

(Akgun et al., 2012; Shadman et al., 2013). Technically, the fuzzy

logic method leads to a flexible combination of weighted criteria

that can subsequently be implemented through GIS-MCDA, in

Fig. 1. Location of the study area.
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Fig. 2. Spatial distribution of the selected criteria: (a) slope, (b) aspect, (c) distance to streams, (d) drainage density, (e) distance to faults, (f) precipitation, (g) distance to

roads, (h) lithology, and (i) land use/land cover.
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order to further improve the accuracy of results (Pradhan, 2010;

Pourghasemi et al., 2012). GIS-MCDA technic differs from data-

driven approaches, such as weights-of-evidence methods or logis-

tic regression, in that it uses the locations of known objects such as

landslides to estimate weightings or coefficients (Pradhan, 2011a,

b; Pourghasemi et al., 2012). Since the LSM process deals with a

variety of criteria it can be assumed that integration of fuzzy set

theory with MCDA, and in particular with an FAHP, will lead to

improvements in the accuracy of landslide susceptibility maps due

to the flexibility of fuzzy membership functions. Based on this

assumption, the main objective of this research was to develop a

new approach for tackling uncertainty and imprecision within the

analytical hierarchy prioritization process by representing the

decision-maker’s judgments as fuzzy numbers or fuzzy sets.

In order to achieve this objective we used an FAHP to develop a

landslide susceptibility map of the Izeh Basin in Iran, which is

highly prone to landslide hazards.

2. Study area

The study area lies within the Izeh Basin, which covers an area

of 3929.78 km2 in the Khuzestan province of south-western Iran

(see Fig. 1). The elevation in the Izeh Basin ranges between 342 m

and 3579 m above sea level. The area has a temperature climate

and the annual precipitation ranges from 400 mm in the lowest

areas to 800 mm in the mountains. The Izeh Basin is important in

terms of its agricultural production and, in particular, its hydro-

electric power plants. The Karun River, which is the longest river

in Iran, flows through this basin. The canyons that the Karun River

flows through have provided opportunities for the construction of

hydroelectric power plants and three main dams have been built

to date along different stretches of the Karun River. The area is,

however, highly susceptibility to mass movements, and in parti-

cular to landslides, which are considered to represent a potential

hazard to the hydropower plants of the Izeh Basin.

The geology of the area is very complex and landslides are

mostly common within Quaternary pediment fan, Asmari and

Aghajari formations. The landslide inventory database for Izeh

Basin records 106 landslide events which had occurred prior to

2013 and recorded posterior this date. Tectonic activity, combined

with the presence of sedimentary formations such as marls, shales,

limestones, gypsum, and siltstones, render this area highly sus-

ceptible to landslide hazards.

3. Material and methods

We used the following three step methodology for LSM:

(a) collection of data and establishment of a spatial database, from

which the causal landslide factors are then extracted, (b) assessment

of landslide susceptibilities using the relationships between land-

slides and their conditioning factors, and (c) validation of results. The

methodology that we used consisted of two stages. The first stage

involved the integration of an AHP with fuzzy set theory in order to

make use of the advantages of fuzzy set theory in AHP-based

pairwise comparisons for qualitative analysis and reducing the

subjectiveness inherent in the assessment of criteria weights. Expert

opinion was sought to rank the criteria on the basis of their

importance and the criteria weights were then calculated using

fuzzy pairwise comparisons. The second stage in our methodology

involved the application of the FMFs to results from the first stage in

order to calculate the fuzzy membership values for each landslide

conditioning factors.

3.1. Selection of criteria and data processing

In order to generate a landslide susceptibility map, criteria

need to be identified that are relevant to the particular situation

under consideration. The set of criteria selected should adequately

represent the problem domain and should contribute towards the

ultimate objective (Prakash, 2003; Feizizadeh and Blaschke,

2013b). For our research we selected four main criteria (topogra-

phy, hydrology, climate, and human factors) and nine sub-criteria

(slope, aspect, distance to streams, distance to roads, drainage

density, distance to faults, lithology, precipitation, and land use/

land cover). Fig. 2 shows the spatial distributions of the selected

sub-criteria.

A number of different data sets were used to prepare the

selected criteria and for input into the evaluation model. The

lithology and fault data were derived from published 1:100,000

geological maps. The road and streams data were extracted from

1:50,000 topographic maps of the study area, which were used to

create digital elevation models (DEMs) that were in turn used to

derive the slope and aspect data. The land use/land cover data was

derived from Landsat ETMþ satellite imagery with a 30 m spatial

resolution through image processing techniques. Available

meteorological data were used to derive annual average precipita-

tion figures for the precipitation map, using interpolation methods

in GIS. The landslide inventory database of the study area, which

was recorded by field survey using GPS locations (MNR, 2010), was

used for validation of the final landslide susceptibility map. All of

the data preprocessing and standardization of the selected LSM

criteria required in the preparation phase was performed on the

original datasets in Arc GIS software, prior to further analysis and

implementation of fuzzy-MCDA.

3.2. Fuzzy set theory

Fuzzy set theory is widely used as a modeling approach for

complex systems that are difficult to define exactly in crisp

numbers. The theory was introduced by Zadeh in 1965. Fuzzy

logic permits the input of vague, imprecise, and ambiguous

information (Kahraman and Kaya, 2010; Balezentiene et al.,

2013). Fuzzy logic is commonly used in spatial planning in order

to be able to treat the spatial objects on a map as members of a set.

In a classic case which is sometimes called “crisp” an object either

belongs to a set or not. However, in fuzzy set theory a candidate

objects can take on membership values between 0 and 1 which

reflects a degree of membership (Zadeh, 1965).

A fuzzy set can be described as follows: if Z denotes a space of

objects, then the fuzzy set (A) in (Z) is a set of ordered pairs:

Afz; MFðzÞg; zAZ ð1Þ

where the membership function MFðzÞ is the set A’s degree of

membership to Z. Fig. 3 shows the triangular fuzzy number

(TFN) ~M contains the basis for the membership function the TFNs

are denoted simply by m1, m2, and m3. The parameters m1, m2 and

Fig. 3. A fuzzy triangular number (Kahraman et al., 2003).
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m3 respectively denote the smallest possible value, the most

promising value, and the largest possible value that describes a

fuzzy object (Kahraman et al., 2003). Using this approach each

TFNs has a linear representation on its left and right sides and the

membership function can be defined as:

μ ðxj ~MÞ

0; xom1

ðx'm1Þ=ðm2'm1Þ; m1rxrm2

ðm3'xÞ= ðm3'm2Þ; m2rxrm3

0; xom3

8

>

>

>

<

>

>

>

:

ð2Þ

A fuzzy number can always be assigned based on its corre-

sponding left and right representation of each degree of member-

ship (Kahraman et al., 2003):

~M ¼ ðMlðyÞ;MrðyÞÞ ¼ ðm1þ ðm2'm1Þy; m3þðm2'm3ÞyÞ:yA ½0;1*

ð3Þ

where lðyÞ and rðyÞ denote the left and right side representations

of a fuzzy number, respectively.

3.3. Integrating an AHP method with fuzzy set theory

AHP is widely used in MCDA to obtain the required weights for

different criteria (Saaty, 1977; Wu, 1998; Ohta et al., 2007). It has

been successfully employed in GIS-based MCDA since the early

1990s (Carver., 1991; Malczewski, 1999a, 1999b, 2004;

Makropoulos et al., 2003; Marinoni, 2004; Marinoni et al., 2009).

An AHP calculates the required weights associated with the

relevant criterion map layers with the help of a preference matrix

in which all of the identified relevant criteria are compared with

each other on the basis of preference factors (Feizizadeh and

Blaschke, 2013a). The weights can then be aggregated with

criterion values to arrive at a single scalar value for each decision

variant (e.g. each location) representing the relative strength of

the given variant. The purpose of AHP is to take into account

expert knowledge, and since a conventional AHP cannot properly

reflect the human choice making based on quantitative articula-

tion of preferences, a fuzzy extension of AHP (called FAHP) was

developed to solve the fuzzy hierarchical problems. In the FAHP

procedure, the pairwise comparisons in the judgment matrix are

fuzzy numbers that are modified by the analyst (Kahraman et al.,

2003). Within this study we employed the FAHP approach to

fuzzify hierarchical analysis by allowing fuzzy numbers for the

pairwise comparisons, in order to determine fuzzy weights. The

following steps were taken after Chen et al. (2011) to determine

evaluation criteria weights using an FAHP:

Step I: Pairwise comparison matrices were established using all

the elements/criteria in the dimensions of the hierarchy sys-

tem. Linguistic terms were assigned to the pairwise compar-

isons as follows, asking in each case, which of the two

elements/criteria were more important:

~A ¼

~1 ~a12 ⋯ ~a1n

~a21
~1 ⋯ ~a1n

⋮ ⋮ ⋱ ⋮

~an1 ~an2 ⋯ ~1

2

6

6

6

6

4

3

7

7

7

7

5

¼

~1 ~a12 ⋯ ~a1n

1= ~a21
~1 ⋯ ~a1n

⋮ ⋮ ⋱ ⋮

1= ~an1 1= ~an2 ⋯ ~1

2

6

6

6

6

4

3

7

7

7

7

5

ð4Þ

where ~aij measure denotes a pair of criteria i and j, let ~1 be

(1,1,1), when i equal j (i.e. i¼ j); if ~1; ~2; ~3; ~4; ~5; ~6; ~7; ~8; ~9

measure that criterion i is relatively important in comparison

with creation j and whereas ~1'1; ~2'1; ~3'1; ~4'1; ~5 '1; ~6 '1;
~7'1; ~8'1; ~9'1 measure that criterion j is relatively more

important (Hong et al. 2005; Chen et al., 2011).

Step II: The geometric mean technique by Buckley was used to

define the fuzzy geometric mean and fuzzy weighting of each

criterion (Buckley, 1985; Chen et al., 2011) as follows:

~r i ¼ ð ~a i1 + ~a i2 + ⋯ + ~a inÞ
ð1=nÞ; and then

~w i ¼ ~r i + ð~r1 + ⋯ + ~rnÞ
'1 ð5Þ

where ~a in is the fuzzy comparison value for the pair criterion i and

criterion n, ~r i is the geometric mean of the fuzzy comparison values

for criterion i compared to each of the other criteria, and ~w i is the

fuzzy weighting of the ith criterion, which can also be represented

by a TFN, ~w i ¼ ðIwi;mwi;uwiÞ; where Iwi; mwi and uwi stand for

the lower, middle and upper values, respectively, of the fuzzy

weighting of the ith criterion, (Chen et al., 2011). In the context of

FAHPs based on triangular fuzzy numbers, several approaches have

been proposed (Erensal et al., 2006); for this study we employed a

fuzzy extent analysis for FAHP, as detailed below.

3.4. Extent analysis method based on a FAHP

Chang (1996) developed an approach using triangular fuzzy

numbers for the pairwise comparison scale of FAHP, and using an

extent analysis method to obtain the synthetic extent values of the

pairwise comparisons. Fuzzy numbers are represented by mem-

bership functions used to handle imprecise information, such as

‘close to 50 or ‘very important’. There are various types of fuzzy

numbers, any one of which may be more suitable than others

for analyzing a given ambiguous structure (Sen and Cınar, 2010).

In our study the extent analysis method was applied to FAHP to a

landslide susceptibility problem. When the expert judgments are

expressed as triangular fuzzy numbers, the triangular fuzzy

comparison matrix is:

~A'ð ~aijÞn-n

ð1;1;1Þ ðl12; m12;u12Þ ⋯ ðl1n; m1n;u1nÞ

ðl21; m21;u21Þ ð1;1;1Þ ⋯ ðl2n; m2n;u2nÞ

⋮ ⋮ ⋱ ⋮

ðln1; mn1;un1Þ ðln2; mn2;un2Þ ⋯ ð1;1;1Þ

2

6

6

6

6

4

3

7

7

7

7

5

ð6Þ

where ~a ij ¼ ðlij;mij;uij; Þ and ~a
'1
ij ¼ ð1=uij; 1=mij; 1=lijÞ

for I; j; '1;…;n and ia j: ð7Þ

The steps of Chang’s fuzzy extent analysis can be summarized

as follows (Vahidnia et al., 2009):

First, sum each row of the fuzzy comparison matrix ~A. Then

normalize the sums of each of the rows (obtaining their fuzzy

synthetic extent) using the fuzzy arithmetic operation:

~S i ¼ ∑
n

j

~a ij + ∑
n

k'1

∑
n

j'1

~akj

" #'1

¼
∑n

j'1lij

∑n
k ¼ 1

∑n
j ¼ 1ukj

;
∑n

j'1mij

∑n
k ¼ 1

∑n
j ¼ 1mkj

;
∑n

j'1uij

∑n
k ¼ 1

∑n
j ¼ 1lkj

 !

; i'1;…;n:

ð8Þ

where + denotes extended multiplication of two fuzzy triangular

numbers. These fuzzy triangular numbers are the relative weight-

ings for each alternative under a given criterion. They also

represent the weighting ascribed to each criterion with respect

to the overall objective. A weighted summation is then used to

obtain the overall performance of each alternative (Vahidnia et al.,

2009).

Second, compute the degree of possibility for ~S iZ ~S j using the

following equation:

Vð ~S iZ ~S jÞ '
sup
yZx½minð ~S iðxÞ; ~S iðyÞ* ð9Þ
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This formula can also be expressed as:

Vð ~S iZ ~S j Þ'

1 miZ mj
ui' li

ðui'mi
Þþ ðmi' li

Þ
ljr uii; j'1;…;n; ja i

0 otherwise

8

>

<

>

:

ð10Þ

where

~S iZ ~S j'ðli ;mi ;uiÞ and ~S j'ðlj ;mj ;ujÞ ð11Þ

Fig. 4 illustrates this degree of possibility for two fuzzy

numbers.

Finally, estimate the priority vector of the

Wðw1;…;wnÞ
T ð12Þ

fuzzy comparison matrix ~A as follows:

wi'
Vð ~S iZ ~S j∣j'1;…;n; ja iÞ

∑n
k'1

V ð ~SkZ
~S j∣j'1;…;n; jakÞ;

i'1;…;n ð13Þ

In order to perform a pairwise comparison between fuzzy

parameters, we defined linguistic variables for several levels of

preference (see Table 1). The fuzzy triangular numbers were used

to represent these preferences, which are depicted in Fig. 5.

When a pair (x,y) exists such that xZy and μM1ðxÞ ¼ μM2ðyÞ, we

then have VðM1ZM2Þ ¼ 1:

Since M1and M2 are convex fuzzy numbers we have that:

VðM1ZM2Þ ¼ 1 -
ifM1ZM2

VðM1ZM2Þ ¼ hgt ðM1 \ M2Þ ¼ μM1ðdÞ otherwise

(

ð14Þ

where d is the ordinate of the highest intersection point D

between μM1 and μM2. The ordinate of D is defined as follows:

VðM1ZM2Þ ¼ hgt ðM1 \ M2Þ ¼ μM1ðdÞ
m1'm3

ðm0
2'm0

3Þþðm2'm3Þ
ð15Þ

To compare M1 andM2; the value of V ðM1Z M2Þ first needs to

be calculated. The degree of possibility for a convex fuzzy number

to be greater than k convex fuzzy numbers Miði¼ 1;2;…;n Þ can be

defined by:

VðMZM1;M2;…;MkÞ ¼ minðVðMZMiÞÞ i¼ 1;2;…; k ð16Þ

assuming that

W 0ðAiÞmin fVðSiZSkÞg k¼ 1;2;…;n; ka i ð17Þ

The weighting vector can then be computed by:

W 0ðAiÞ ¼ ½W 0ðA1Þ; W
0ðA2Þ; …; W 0ðAnÞ *

T ð18Þ

where Aiði¼ 1;2;…;nÞ are n elements: Following normalization,

the normalized weight vectors are:

WðAiÞ ¼ ½WðA1Þ;WðA2Þ; …; WðAnÞ*
T ð19Þ

where W is considered to be a nonfuzzy number.

3.5. Fuzzy synthetic decision

In FAHP the weighting ascribed to each criterion and the fuzzy

performance values must be integrated by the calculation of fuzzy

numbers so as to be located at the fuzzy performance value

(effect-value) of the integral evaluation. The criteria weight vector
~w ¼ ð ~w1;…; ~w i;…; ~wnÞ

tcan be obtained using each of the criterion

weightings ( ~w i) derived by the FAHP, while the fuzzy perfor-

mance/evaluation matrix ~E for each of the alternatives can be

obtained from the fuzzy performance value of each alternative

under n criteria, that is, ~E ¼ ðekiÞm-n: A final fuzzy synthetic

decision can be derived from the criteria weighting vector ~w and

the fuzzy performance matrix ~E , the result being in the form of a

fuzzy synthetic decision vector ~e ¼ ðe1;…; ek;…; emÞ
0 (Chen et al.,

2011), that is:

~e ¼ ~E + ~w ¼ ~w 0
+ ~E

0
ð20Þ

in which the sign + indicates the calculation of the fuzzy

numbers, including fuzzy addition and fuzzy multiplication. Since

fuzzy multiplication is rather complex, it is usually denoted by the

approximate result of the fuzzy multiplication. The approximate

fuzzy number ~S i from the fuzzy synthetic decision of each

alternative can be shown as

ek ¼ ðlek; mek;uekÞ ð21Þ

where lsk, msk and usk are the lower, middle and upper synthetic

performance values, respectively, of alternative k (Chen et al., 2011),

that is:

lsk ¼ ∑
n

i ¼ 1

leki - lwi; mek ¼ ∑
n

i ¼ 1

meki -mwi;

uek ¼ ∑
n

i ¼ 1

ueki - uwi ð22Þ

Fig. 4. The degree of possibility Vð ~S iZ
~S jÞ (Vahidnia et al., 2009).

Table 1

Triangular fuzzy number of linguistic variables used in this study (Saaty and Vargas, 2008; Vahidnia et al., 2009).

Linguistic variables Triangular fuzzy numbers Reciprocal triangular fuzzy numbers

Extremely strong (9,9,9) (1/9, 1/9, 1/9)

Very strong (6,7,8) (1/8, 1/7, 1/6)

Strong (4,5,6) (1/6, 1/5, 1/4)

Moderately strong (2,3,4) (1/4, 1/3, 1/2)

Equally strong (1,1,1) (1,1,1)

Intermediate (7,8,9), (5,6,7), (3,4,5), (1,2,3) (1/9, 1/8,1/7), (1/7, 1/6,1/5), (1/5, 1/4,1/3), (1/3, 1/2,1)

Fig. 5. TFNs corresponding to linguistic variables representing levels of preference

(Vahidnia et al., 2009).
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3.6. Ranking the fuzzy numbers

Fuzzy number is the results of fuzzy synthetic decision attained

by the various alternatives. In order to compare the respective

fuzzy number for determining the most effective alternative plans

a defuzzification method is applied (Opricovic and zengG, 2003;

Chen et al., 2011). Methods used for defuzzification of such fuzzy

rankings generally include mean of maximal (MOM), center of

area (COA), and a-cut methods. The COA method offers a simple

and practical way to determine the BNP, with no need to include

the preferences of any evaluators. The BNP value of the fuzzy

number ~ek, which is equal to ðlek; mek;uekÞ; can be found using the

following equation:

BNP ¼ lekþ
ðuek' lekÞþðmek' lekÞ

3
; 8k: ð23Þ

Based on the achieved BNP value for each alternative, a

respective ranking of the best plan for alternatives can then be

applied (Chen et al., 2011).

4. Application of an FAHP combined with fuzzy

standardization for LSM

The integration of fuzzy sets with GIS-MCDA has been demon-

strated to be an effective methodology for susceptibility assess-

ment and hazard mapping (Mason and Rosenbaum, 2002). Also,

applying a FMF in standardization process for LSM allows to

establishing the susceptibility degree of landslides occurrences

for any individual pixel within each criteria. Pixels can be attrib-

uted numeric values ranging from 0 (not susceptible) to 1 (very

susceptible) (Pourghasemi et al., 2012). In our study we imple-

mented a two-stage FAHP for LSM as follows (see Fig. 6).

4.1. Stage I: Using FAHP to determine criteria weights

Criteria weights were first assigned to the attribute maps

(Meng et al., 2011; Feizizadeh and Blaschke, 2013b; Feizizadeh

et al., 2013b). The derivation of weights is a central step in eliciting

the decision Maker’s preferences (Malczewski, 2000). A pairwise

comparison matrix was then established using the prior knowl-

edge of goodness-of-fit in order to assign weights before produ-

cing a landslide susceptibility map. The standardized predictor

variable values were aggregated with weights derived from FAHP

in order to evaluate the sensitivity of the landslide susceptibility

map to different predictor variables. Table 2 shows the FAHP-based

pairwise comparison matrix calculated for nine criteria. In order to

obtain final criteria weights from the FAHP, the synthetic values

(see Section 3.5) were first calculated as an FAHP pairwise matrix

(et al., 2003):

∑
n

i ¼ 1

∑
m

j ¼ 1

Mj
gi

" #'1

¼ ð74:18 105:98 163:15Þ'1 ¼ ð0:006 0:009 0:013Þ

ð24Þ

Sslope¼(15.4 24.8 34.5)- (0.006 0.009 0.013)¼(0.09 0.23 0.47),

Saspect¼(4.3 6.7 9.1)- (0.006 0.009 0.013)¼(0.02 0.06 0.12),

Sdistance to streams¼(8.3 12.7 23)- (0.006 0.009 0.013)¼

(0.05 0.1211 0.31), Sdrainage density¼(6.2 9.2 15.3)- (0.006 0.009

0.013)¼(0.03 0.08 0.20), Sdistance to faults¼(4.8 7.5 13)- (0.006

0.009 0.013)¼(0.03 0.07 0.17), Sprecipitation¼(3.7 5.1 8.1)- (0.006

0.009 0.013)¼(0.02 0.05 0.11), Sdistance to roads¼(5.75 13.5 19.1)-

(0.006 0.009 0.013)¼(0.03 0.12 0.26), Slithology¼(13.1 19.4 29.2)-

(0.006 0.009 0.013)¼(0.08 0.18 0.4), Sland use/cover¼(5 6.7 11.7)-

(0.006 0.009 0.013)¼(0.03 0.06 0.16).

In making the calculations, the fuzzy values were normalized as

in Eq. (19). The results of this stage are shown in Table 3. The

weight vector was then calculated from Table 3 as follows:

W 0ðxiÞ ¼ f1 0:33 0:613 0:478 0:434 0:294 0:612 0:708 0:39gT ð25Þ

W 0ðxiÞ ¼ f0:177 0:07 0:13 0:101 0:092 0:062 0:131 0:15 0:083gT

ð26Þ

This defuzzification process resulted in crisp weights, which

were then used for LSM criteria integration (see Table 4). From

these results slope and lithology were identified as the two most

important criteria for LSM.

4.2. Stage II: Application of FMFs

In the second stage all criteria were standardized using a fuzzy

set. In order to standardize landslide related criteria in GIS

framework, base on the defined fuzzy and crisp membership

functions (see Fig. 7), nine raster datasets are first constructed

for each landslide related criteria based on subsequent slope,

aspect, distance, density, polygon to raster and kriging interpola-

tion functions (see Fig. 2). Afterwards, cell values of each raster

datasets associated with each landslide related criteria are con-

verted to fuzzy scores using raster calculator in ArcGIS environ-

ment. In essence, these fuzzy scores are fuzzy membership values

attaches to each cell (which range from the least susceptible 0 to

the most susceptible 1).

There is no optimal method for choosing the most appropriate

FMFs and their respective parameters and they are generally

selected according to the preferences of the decision makers or

analyst experience. In this process, sigmoidal membership func-

tions (i.e., monotonically decreasing and monotonically increas-

ing), user-defined linear membership functions, two crisp

membership functions, are specified for selected landslide criteria

(see Fig. 7). The sigmoidal membership function is probably the

most commonly used function in fuzzy set theory (Zadeh, 1965;

Eastman, 2004; Liu et al., 2004). although user-defined linear FMFs

or crisp membership functions are also sometimes used. Here,

regarding the inherent characteristics of lithology and land use/

land cover criteria two different crisp membership function (i.e.

two look up table) were implemented for further standardization

of those mentioned criteria (see Fig. 7). To this end, less suscept-

ibility value is assigned to the less susceptible formation or land

used/ land cover class, and vice versa. All membership functions

obtained from LSM criteria outputs are applied to each parameter,

which are then classified into groups on the basis of their landslide

susceptibilities (see Fig. 8).

5. Results and validation

The final landslide susceptibility map was produced using the

results from the two stages described in Section 4 above, in the

following way:

LSMAHP ¼ ðslope degree-WAHPÞþðaspect -WAHPÞ

þðdis tan ce to streamþWAHPÞ

þðdrainage densityþWAHPÞþðdistance to f aultsþWAHPÞ

þðprecipitationþWAHPÞ

þðdistance to roadsþWAHPÞþðLithologyþWAHPÞ

þðLand us=coverþWAHPÞ ð27Þ

where WAHP is the respective weight for the each of the LSM

criteria. The resulting landslide susceptibility map was then

divided into five susceptibility categories (very low, low, moderate,

high, and very high) using the natural breaks method to determine

the class intervals (Feizizadeh and Blaschke., 2013a) (see Fig. 9).
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Fig. 6. Schematic representation of proposed LSM.

Table 2

FAHP evaluation matrix.

1 2 3 4 5 6 7 8 9

Slope (1)

M1 1 2.5 2 2 1.3 2 1.6 0.9 2

M2 1 3.5 3.5 2.75 2.5 4 2.85 1.75 3

M3 1 4.5 4 3.65 3.7 5 5 2.65 5

Aspect (2)

M1 0.22 1 0.25 0.5 0.5 0.8 0.28 0.25 0.5

M2 0.28 1 0.4 0.66 1.5 1.25 0.4 0.33 0.9

M3 0.4 1 0.5 1 2 1.6 1 0.5 1.1

Distance to streams (3)

M1 0.25 2 1 0.54 0.5 1.5 0.67 0.4 1

M2 0.28 2.5 1 1 1.5 2.5 1.33 0.67 2

M3 0.5 4 1 2 2 5 4 1.5 3

Drainage density (4)

M1 0.27 1 0.5 1 0.75 1 0.67 0.28 0.75

M2 0.36 1.5 1 1 1 1.54 1 0.35 1.5

M3 0.5 2 1.85 1 3 2.5 2 0.45 2

Distance to fault (5)

M1 0.27 0.5 0.5 0.33 1 1 0.25 0.25 0.7

M2 0.4 0.66 0.66 1 1 2 0.33 0.5 1

M3 0.75 2 1 1.33 1 3 1 0.75 2.2

Precipitation (6)

M1 0.2 0.62 0.2 0.4 0.33 1 0.25 0.2 0.5

M2 0.25 0.8 0.4 0.65 0.5 1 0.4 0.33 0.75

M3 0.5 1.25 0.66 1 1 1 1 0.67 1

Distance to road (7)

M1 0.2 1 0.25 0.5 1 1 1 0.3 0.5

M2 0.35 2.5 0.75 1 0.3 2.5 1 0.4 2

M3 0.6 3.5 1.5 1.5 0.4 4 1 0.5 2.5

Lithology (8)

M1 0.37 2 0.6 2.2 1.33 1.5 2 1 2

M2 0.57 3 1.5 2.8 2 3 2.5 1 3

M3 1.1 4 3.3 3.5 4 5 3.33 1 4

Land use/cover (9)

M1 0. 2 0.9 0.33 0.5 0.45 1 0.4 0.25 1

M2 0.33 1.1 0.5 0.66 1 1.33 0.5 0.33 1

M3 0.5 2 1 1.3 1.43 2 2 0.5 1
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Considering the fact that modelling is one of the main tools for

the assessment of natural hazards (Nefeslioglu et al., 2013),

validation is a fundamental step in the development of a suscept-

ibility map and is important for determining its predictive ability.

Accordingly, the final landslide susceptibility map was validated

using known landslide locations (Yilmaz, 2010). The predictive

capability of landslide susceptibility maps is usually estimated

using independent information that was not utilized in the LSM

process. The accuracy of the landslide susceptibility map was

therefore evaluated through the relative operating characteristics

(ROCs) (Fawcett, 2006; Nandi and Shakoor, 2009), by analyzing

known landslides that have been observed within each of the

various categories of the landslide susceptibility map.

In the ROC method, the area under the curve (AUC) values

(which range from 0.5 to 1.0) are base of accuracy assessment for

the model. The AUC leads to determine the quality of the

probabilistic model by describing its ability to reliably predict

the occurrence or non-occurrence of landslide event. In this

approach, the ideal model shows an AUC close to 1.0, while a

value close to 0.5 indicates inaccuracy in the model (Fawcett,

2006; Nandi and Shakoor, 2009; Feizizadeh et al., 2013c). In order

to apply the ROC method, a representative dataset was prepared

based on the landslide inventory database. Accordingly, to com-

pute the AUC, 106 known landslide events were used and 108 non-

landslide locations were selected at random. The AUC of the ROC

curve was calculated to be 0.894 with a standard error of 0.02 (see

Fig. 10). The resulting landslide susceptibility map was also

verified using the landslide inventory map, by overlaying the 106

known landslides on the landslide susceptibility map (see Fig. 11).

Approximately 84% of known landslides fell in the ‘very high

susceptibility’ and ‘high susceptibility’ zones, which together cover

25% of the total study area. Almost 14.15% of known landslides fell

into the ‘moderate susceptibility’ category, with only 1.89% of

landslides falling in the ‘low susceptibility category’. No landslide

events were recorded from within the ‘very low susceptibility’

category.

6. Discussion

Our research aims to integrate fuzzy set theory with AHP-

MCDA for LSM. We introduced an approach that integrates fuzzy

set theory and information theory algorithms (i.e. extended),

which could be a useful geospatial tool for integrating multiple

features/attributes that affect the LSM process. This is an inte-

grated strategic LSM framework with emphasis on structuring the

decision making process problem. Within this approach a FAHP

was employed to determine the criteria weightings from subjec-

tive judgments of decision-making domain experts. This FAHP

approach includes careful selection and standardization of land-

slide related criteria and weighting procedures using objective

methods which determine the criteria weights by solving math-

ematical models without any consideration of the decision

maker’s preferences (as is conventional in subjective methods).

The results confirm that the integration of fuzzy set theory with

AHP can result in high-reliability landslide susceptibility maps.

This Fuzzy-AHP integration is promising for GIS-MCDA as it tackles

two major limitations of the traditional AHP. Firstly, AHP is usually

applied in a single process, relying on expert knowledge for

assessing the criteria weights while allowing a certain degree of

subjectivity in the pairwise comparison matrix. Secondly, the

incompatibility of the technique with rational choice theory has

been ascribed to a limited scale of judgment, lack of transitivity,

and the rank reversal phenomenon. Although several alternative

scales have been recommended, none of them completely address

the above mentioned problems with AHP. Saaty (1977) used a ratio

scale which is used by nearly all applications (Duru et al., 2012).

The uncertainty of information and the vagueness of human

judgment make it difficult to provide exact numerical weights

for evaluation criteria. Most of the pairwise comparison ratings

cannot be selected precisely and experts may therefore prefer

intermediate ratings rather than certain ratings. To overcome this

lack of precision, FAHP makes the comparison process more

flexible for eliciting experts’ preferences (Kahraman et al., 2003;

Kutlu and Ekmekçioglu., 2012). In the FAHP approach, every choice

has its own particular regime, which is associated with a two-

dimensional priority matrix (e.g. criteria vs. criteria). On the other

hand, conventional AHP uses pairwise comparisons of criteria in a

top-down process and weights choice matrices by the result of a

single identical priority matrix (Duru et al., 2012). Since the

evaluation criteria of the best plan have the diverse connotations

and meanings, there is no logical reason to treat them all as being

of equal importance. Furthermore, FAHP was used to handle the

Table 3

The ordinate of the highest intersection point and the degree possibility for TFNs.

i¼Slope i¼Aspect i¼Distance to stream

V(SiZSAspect )¼1 V(SiZSSlope)¼0.330 V(SiZSSlope)¼0.613

V(SiZSStream)¼1 V(SiZSStream)¼0.386 V(SiZSAspect)¼1

V(SiZSDrainage)¼1 V(SiZSDrainage)¼0.538 V(SiZSDrainage)¼1

V(SiZSFault)¼1 V(SiZSFault)¼0.587 V(SiZSFault)¼1

V(SiZSPrecipitation)¼1 V(SiZSPrecipitation)¼1 V(SiZSPrecipitation)¼1

V(SiZSRoad)¼1 V(SiZSRoad)¼0.506 V(SiZSRoad)¼0.806

V(SiZSLitholog y)¼1 V(SiZSRoad)¼0.354 V(SiZSLitholog y)¼0.643

V(SiZSLanduse)¼1 V(SiZSLanduse)¼0.624 V(SiZSLanduse)¼1

min fVðSiZSkÞg¼1 min fVðSiZSkÞg¼0.330 min fVðSiZSkÞg¼0.613

i¼Drainage density i¼Distance to fault i¼Precipitation

V(SiZSSlope)¼0.478 V(SiZSSlope)¼0.434 V(SiZSSlope)¼0.294

V(SiZSAspect )¼1 V(SiZSAspect)¼1 V(SiZSAspect)¼0.714

V(SiZSStream)¼0.750 V(SiZSStream)¼0.461 V(SiZSStream)¼0.294

V(SiZSFault)¼1 V(SiZSDrainage)¼0.652 V(SiZSDrainage)¼0.478

V(SiZSPrecipitation)¼1 V(SiZSPrecipitation)¼1 V(SiZSPrecipitation)¼0.520

V(SiZSRoad)¼0.672 V(SiZSRoad)¼0.621 V(SiZSRoad)¼0.449

V(SiZSLitholog y)¼0.506 V(SiZSLitholog y)¼0.461 V(SiZSLitholog y)¼0.315

V(SiZSLanduse)¼1 V(SiZSLanduse)¼1 V(SiZSLanduse)¼0.552

min fVðSiZSkÞg¼0.478 min fVðSiZSkÞg¼0.434 min fVðSiZSkÞg¼0.294

i¼Distance to road i¼Lithology i¼Land use/cover

V(SiZSSlope)¼0.612 V(SiZSSlope)¼0.708 V(SiZSSlope)¼0.390

V(SiZSAspect )¼1 V(SiZSAspect)¼1 V(SiZSAspect)¼1

V(SiZSStream)¼1 V(SiZSRiver)¼1 V(SiZSStream)¼0.448

V(SiZSDrainage)¼1 V(SiZSDrainage)¼1 V(SiZSDrainage)¼0.595

V(SiZSFault)¼1 V(SiZSFault)¼1 V(SiZSFault)¼0.6399

V(SiZSPrecipitation)¼1 V(SiZSPrecipitation)¼1 V(SiZSPrecipitation)¼1

V(SiZSLitholog y)¼0.647 V(SiZSRoad)¼1 V(SiZSRoad)¼0.565

V(SiZSLanduse)¼1 V(SiZSLitholog y)¼0.415

min fVðSiZSkÞ¼0.612 min fVðSiZSkÞg¼0.708 min fVðSiZSkÞg¼0.390

Table 4

The calculated weight vector from FAHP and TFNs.

Criteria Weight

Slope 0.177

Aspect 0.07

Distance to stream 0.13

Drainage density 0.101

Distance to fault 0. 092

Precipitation 0.062

Distance to roads 0.131

Lithology 0.15

Land use/cover 0.083
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qualitative criteria of LSM (e.g. land use, aspect, and lithology)

which are difficult to express in crisp values, thus strengthening

the approach and making it more versatile and accommodating to

different ways of expressing preferences (Chen et al., 2011).

FAHP evaluates both priorities and data through fuzzy sets

(Duru et al., 2012). In our research, the extended FAHP framework

has been applied to LSM. The innovation for LSM research is that

this framework uses synthetic extent values derived through

pairwise comparisons. However, as Duru et al. (2012) point out,

many FAHP studies ignore the matrix consistency problem, even if

the judgments are inconsistent. Our results indicate that the

integration of fuzzy sets with AHP in both criteria weighting and

standardization leads to greater flexibility in judgment and deci-

sion making. In fact, this method addresses uncertainties in LSM

by (a) using FMFs in the susceptibility model, and (b) using TFNs

instead of crisp numbers when comparing the relative importance

of the various LSM criteria (Chen et al., 2011). Using more

computationally intensive FMFs preserve the original quality of

spatial data. In this respect using variety of FMFs positively affect

validity and accuracy of input spatial criteria. Missing values, or

generalized inputs, can appear in otherwise precise data. Fig. 12

illustrates data loss due to using crisp standardization (i.e. reclas-

sification) in geographic information systems.

These important functionalities are not supported by conven-

tional AHP, which assumes that the relative importance of criteria

remains identical for every decision alternative (Duru et al., 2012).

In contrast, FAHP uses a range of values to express the decision

maker’s uncertainty. Obviously removing uncertainty from deci-

sion making models leads to an improved accuracy of results. In

this regard, Feizizadeh and Blaschke (2014) pointed out that the

Fig. 7. FAHP-based membership functions including: (Type I) user defined FMFs for (a) slope and (b) aspect, (Type II) Sigmoidal FMFs for (c) distance to streams, (d) drainage

density, (e) distance to faults, (f) precipitation, (g) distance to roads, and (Type III) Crisp MFs for (h) lithology and (i) land use/cover.
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Fig. 8. Spatial distribution of landslide susceptibility for each criterion, based on fuzzy membership functions (i.e. fuzzy or crisp) of each parameter: (a) slope, (b) aspect,

(c) distance to streams, (d) drainage density, (e) distance to faults, (f) precipitation, (g) distance to roads, (h) lithology, and (i) land use/cover.
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traditional AHP suffers from sensitivity in decision making and is

prone to error of expert knowledge. They demonstrated that

removing uncertainty from AHP’s weights by applying Monte

Carlo simulation tends to lead to more accurate results.

As AHP’s pairwise matrix represents a Boolean framework for

criteria ranking, obviously its integration with fuzzy approach

leads to an improved decision making approach. According to

our results it can be stated the AHP is a very well suited

methodology to evaluate LSM maps while integrated into GIS-

MCDA. This holds true for both criteria weighting and standardi-

zation, taking uncertainties into account in the LSM process not

only by using FMFs in susceptibility modeling but also by means of

TFNs instead of crisp numbers for comparing the relative impor-

tance between LSM criteria. On the other hand, fuzzy logic is

attractive because it is straightforward to understand and imple-

ment. It can be used with data from any measurement scale, and

the weighting of evidence is controlled entirely by the expert

(Feizizadeh et al., 2013b). Nevertheless, using linguistic variables

makes the evaluation process more realistic. Because evaluation is

not an exact process and has fuzziness in its body. Here, the use of

FAHP weights makes the application more realistic and reliable

(Oguzitimur, 2011).

7. Conclusion and future work

This study presents an integrated strategy for LSM with an

emphasis on structuring the decision problem. This includes

careful selection and weighting of criteria and alternative evalua-

tions. The presented GIS-based fuzzy-MCDA framework was

applied to landslide hazard, in order to understand the processes

that contribute to the landslides. Our results indicate that the GIS-

based fuzzy-MCDA framework offers flexibility in handling basic

elements of complex decision-making problems involved in LSM.

We conclude that, when compared with conventional GIS-based

AHP, the FAHP framework offers greater flexibility for evaluating

LSM results. There remain, however, different uncertainty aspects

of LSM to be dealt with. There will always be a degree of

uncertainty in any LSM as a result of the uncertainty inherent in

various LSM criteria, both in the relative importance of the criteria

and in the degree of landslide susceptibility indicated by each

criterion. Our results show that the integration of fuzzy sets with

AHP can contribute to the production of landslide susceptibility

maps with a reasonably high level of reliability. To account for

spatial uncertainty in FAHP approach, our future research will

include the application of a spatially-explicit reliability model for

spatial sensitivity and uncertainty analysis associated with AHP

and FAHP. The integration of fuzzy sets with GIS-MCDA-ordered

weighted averaging and uncertainty analysis of the results based

on Dempster Shafer theory will also be addressed in future work.

In this regard, we emphasize the importance of accuracy in

landslide susceptibility maps, in order for these maps to be used

as a basis for land use planning and mitigating future landslide

hazards. The proposed FAHP method has the advantage of objec-

tive weight evaluation; we conclude that it can be used not only in

similar areas of geo-hazards risk analysis and mapping, such as

LSM, earthquake and flood risk mapping, but also in multi-hazard

risk assessment for further combination of risk elements. We may

emphasis that the landslide susceptibility maps with a high level

Fig. 9. Final landslide susceptibility map.

Fig. 10. ROC curve for the obtained landslide susceptibility map.
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of reliability are clearly important when seeking to explain the

driving factors behind known landslides, as well as for supporting

emergency decisions and efforts to mitigate future landslide

hazards (Feizizadeh and Blaschke., 2012). The results of this study

will be passed on to regional authorities in order to assist citizens,

planners, and engineers to reduce the losses caused by future

landslides through prevention, mitigation, and avoidance. In con-

junction with our earlier research, these results will be useful in

explaining the relationship between known landslides and land-

slide susceptibility, and can therefore be used to support decisions

relating to emergency planning and mitigation in the Khuzestan

province, as well as supporting the development of a landslide risk

management strategy for Izeh Basin.
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