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Abstract: In Europe, heating of houses and commercial areas is one of the major 

contributors to greenhouse gas emissions. When considering the drastic impact of an 

increasing emission of greenhouse gases as well as the finiteness of fossil resources, the 

usage of efficient and renewable energy generation technologies has to be increased. In this 

context, small-scale heating networks are an important technical component, which enable 

the efficient and sustainable usage of various heat generation technologies. This paper 

investigates how the potential of district heating for different settlement structures can be 

assessed. In particular, we analyze in which way remote sensing and GIS data can assist the 

planning of optimized heat allocation systems. In order to identify the best suited locations, 

a spatial model is defined to assess the potential for small district heating networks. Within 

the spatial model, the local heat demand and the economic costs of the necessary heat 

allocation infrastructure are compared. Therefore, a first and major step is the detailed 

characterization of the settlement structure by means of remote sensing data. The method is 

developed on the basis of a test area in the town of Oberhaching in the South of Germany. 
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The results are validated through detailed in situ data sets and demonstrate that the model 

facilitates both the calculation of the required input parameters and an accurate assessment 

of the district heating potential. The described method can be transferred to other 

investigation areas with a larger spatial extent. The study underlines the range of applications 

for remote sensing-based analyses with respect to energy-related planning issues. 

Keywords: renewable energy systems; heat demand; small-scale heating networks; very 

high and medium geometric resolution, multisensory remote sensing data 

 

1. Introduction  

The heat supply for residential houses as well as for buildings of the public and private service 

sector is often based on the use of fossil energy sources. These are still burned in old boilers with 

relatively low efficiency and high emissions [1]. In contrast, renewable energy resources and efficient 

energy generation technologies like cogeneration consider the finiteness of fossil resources as well as 

the drastic impact of increasing greenhouse gas emission. Therefore, a sustainable adjustment of 

energy systems is a high priority for national and international political agendas. In a study for the 

German Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), a shift 

towards a more sustainable energy system for Germany is proposed [2]. By the year 2050, 50% of the 

heat supply should be provided by renewable energy resources. In this scenario, 60% of the renewable 

energy-based heat consumption is made available by (district and small-scale) heating networks. For 

that reason, an increase of pipeline-bound heat allocation systems is mandatory. To accommodate the 

outlined scenarios for regional planning and the search for best suited locations for district heating 

networks, spatially detailed analyses are needed to evaluate and identify feasible settlement structures. 

This information will also be useful when comparing settlement structures that already have an 

efficient district heating system with undeveloped areas to identify possible implementation scenarios 

and to assess the economic usage potential in general. 

Therefore, our goal is to show how physical-structural potentials for district heating can be assessed 

by means of a transferable and robust approach that allows for area-wide analyses with a high spatial 

and thematic detail. We utilize very high and medium resolution remote sensing data including a 

digital surface model (DSM), multispectral IKONOS imagery, Landsat and TerraSAR-X data, and 

ancillary street vectors from the OpenStreetMap (OSM) project. The data is used to characterize 

settlement structures and to derive energy-relevant infrastructural parameters. The information is 

combined within a spatial model to quantitatively assess potentials for district heating. 

1.1. State of the Art  

Remote sensing applications for urban areas are manifold. Due to limited space we refer to [3-5] for 

an overview of the range of sensors and methods deployed. Interestingly, remote sensing energy 

applications are relatively rare. The majority of energy-related remote sensing applications are devoted 

to medium to small-scale applications for bioenergy, solar radiation and wind energy potential. Since 
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biomass can supplement coal or in some cases gas in conventional power plants, regional and national 

forest inventories have increasingly been recognized as powerful and appropriate data for calculating 

forest biomass on a large scale. Remotely sensed data have become the primary source for biomass 

estimation. A literature review for remote sensing based biomass estimation is, e.g., provided by [6] 

and values of remote sensing platforms to buyers and sellers of energy is shown by [7]. 

For solar energy applications two foci may be identified: (a) wide-ranging overview estimations of 

solar radiation and solar energy potentials; and (b) spatially detailed applications, for example aiming 

at single houses and potentials for photovoltaic installations. Page et al. [8] published a European Solar 

Radiation Atlas which is widely used by architects, engineers, meteorologists, agronomists, and local 

authorities. This product is just one example of the first category of general information provided by 

remote sensing data.  

Urban applications mostly deal with planning of energy-efficient buildings and cities, but in addition 

to this intelligent operation of their energy supply systems will become of primary importance in the 

future. It is clear that both planning and operation strongly depend on the availability of accurate 

information on the governing boundary conditions. The increased use of solar energy technologies leads 

to more and more applications modeling individual rooftop potentials. The concept is not new (see [9]) 

but the numbers of methods and applications published has sharply increased over the last few years.  

Less commonly found in urban areas are remote sensing based wind energy applications. Several 

authors have classified wind fields at different scales (e.g., [10]) and wind speed maps are produced for 

many regions of the world, both for onshore and offshore usage (e.g., [11]). 

The methods presented in this paper are based on the premise that data may be combined from two 

disparate data streams: remote sensing and GIS data. In fact, in a spatially enabled society [12] it is 

unlikely that any project needs to rely exclusively on remote sensing data. Geographic information 

such as settlements and/or socio-economic data, boundaries for administrative areas, digital terrain 

models, street networks, and urban extents can all be found. Today, all of this information is organized 

with redundancy in spatial data infrastructure where remotely sensed data is often the source of some 

of these data sets (e.g., settlements identified by night-time imagery). We may conclude that the 

integration of remote sensing and GIS technologies has been applied widely and is recognized as an 

effective tool in urban analysis and modeling ([13,14]). Today, GIS systems can sufficiently display 

and query raster images, while remote sensing digital image processing systems offer the similar 

capability for handling vector data. While some good examples lead the way (see e.g., [15,16]) we may 

therefore critically ask why energy applications are not so widespread.  

For Germany, several interdisciplinary research concepts and methodological approaches emerged 

to assess the potential of district heating systems or their crucial parameters and aspects. The relation 

of settlement structures and heat distribution systems was already described by [17,18]. Winkens [19] 

adapts this relation and characterizes several settlement structures with affiliated specific cost of the 

necessary heat infrastructure. Different settlement structure types are identified by manual cartographic 

methods. For these structure types, idealized specific values for the present and future heat demand and 

costs for the heat allocation are appointed by building-to-building estimations, then subdivided 

according to different power generation systems. 

In the context of a study about strategies and technologies of pluralistic district heating systems in 

Germany [20], several approaches are presented to gain spatially disaggregated statements about 
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perspectives and scenarios of pipeline-bound heat supply systems. Blesl et al. [21] characterize several 

built-up structures to define exemplary supply areas. Aerial images are interpreted manually and 

processed using a GIS. Eickmeier and Schulz [22] use regional statistics for selected model-cities and 

communities with more than 20,000 inhabitants to show perspectives of heating networks in Germany 

on a regional scale. For a more detailed assessment of the district heat demand [23] reconstructed 

buildings by combining airborne laser scanning data with building geometries of the German Official 

Land Registry (ALK), followed by a classification of the building inventory using a building typology 

with physical building characteristics (see also [24,25]). Based on digital topographic maps (scale 

1:25,000) and authoritative digital maps, Meinel et al. [26,27] automatically extract building footprints 

and delineate settlement structures by means of digital image processing techniques and GIS 

functionalities. Additionally, parameters on the settlement structure such as apartment numbers, etc., 

are calculated from a spatial disaggregation approach using statistical data at municipality level. 

Comparing maps of the building inventory from different periods of time enables the development of 

the built environment to be analyzed and therefore derive periods of construction on an individual 

building level [28].  

Fischedick et al. and Schillings et al. [29,30] combine land use information extracted from Landsat 

data, DSM‘s, topographic maps and additional information about transport infrastructure (Land25, 

©Infoterra 2001) with commercial geo data (Local®Haus, Infas) in order to regionalize the local heat 

demand, to calculate affiliated infrastructure costs and to assess endogenous potentials of renewable 

energy resources. These analyses are performed on municipality level for Germany with the limitation 

that valid statements can only be made for more aggregated administrative units, e.g., provinces or 

counties. 

1.2. Research Questions  

As briefly described, the cited studies are primarily embedded in an interdisciplinary research 

environment and consider several aspects of the evaluation of urban structures for district heating 

systems at different spatial scales and based on diverse methodological approaches. Therefore, a 

theoretical spatial model must be defined with justification from the underlying implicit and explicit 

assumptions and preconditions. In this context, it is has to be evaluated how comprehensive the range 

of applications and significance of remote sensing in this energy-related research environment is in 

principle. Hence a first research question is:  

(1) What can remote sensing-based analysis contribute to the assessment of local potentials of  

district heat?  

The focus of this paper is to show the range of capabilities of remote sensing to quantify the 

relevant parameters. In this context the central challenge is to evaluate the potential of very high (such 

as Ikonos) and medium geometric resolution (such as Landsat) remote sensing data to the suitability for 

an implementation of district heating systems on local building block level. Therefore, the second 

research question is:  

(2) Is it possible to identify local potentials for district heat based on remote sensing data area-wide 

which is reliable?  
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Especially for planning questions, it is crucial to allocate resources efficiently. This leads to the 

third research question:  

(3) Is it possible to categorize and prioritize appropriate settlement structures for the implementation 

of district heating systems?  

All these questions should be discussed under the framing conditions that the method to be 

developed should be applicable for area-wide analysis in a standardized way, independent of 

administrative boundaries and proprietary data. 

2. Characteristics of Small District Heating Systems, Study Area and Data Base 

District heating systems represent the technical infrastructure for the pipeline-bound allocation of 

thermal energy between a heat source and the consumers. The thermal energy is produced in a heat 

station directly or is released as a by-product during the generation of electric power (usage of waste 

heat). Generally, water or water steam is used as a transport medium to conduct the heat in insulated 

pipes to the buildings. Small-scale heating networks are typically constructed as closed circuits to 

conduct the heated transport medium to the consumers, revert it cooled, and reheat it again. The main 

network is normally laid along existing streets with individual house connections to the buildings. 

Within the buildings the heat pipe is connected by a consumer station to the water pipes of the internal 

distribution system in order to supply the building with heat and hot water [31].  

District heating systems have several advantages that make them almost indispensable for a 

sustainable heat supply. The technical and economical advantages are primarily due to the aggregation 

of multiple consumers to one big heat consumer. On this basis, several energy generation technologies 

like cogeneration as well as renewable energies can be used efficiently. This is especially true for large 

cogeneration stations that are more efficient and economic than small stations, for large solar systems 

that are by far cheaper than small installations, as well as for geothermal stations that provide a huge 

amount of heat. For the usage of biomass district heating systems enable efficient combustion of 

problematic fuels like straw in large systems without extensive transformation processes ([30,32]). 

2.1. Study Area and Data Base  

The test site comprises an area of about 12 km
2
 of the municipal area of Oberhaching which is 

located in the South of Munich, Germany. For a detailed characterization of build-up structures and 

urban environments with respect to energy-relevant parameters a combination of very high and 

medium resolution remote sensing data is required. Built-up structures in general are characterized by a 

high variability of objects and their surface. To reconstruct the urban environment, to derive physical 

parameters and to describe structural characteristics a combination of multispectral optical Ikonos 

imagery, and a DSM based on stereoscopic airborne remote sensing images (3K) are utilized. Ancillary 

street vectors from the OSM project [33] are used to define building blocks, to enhance the land cover 

classification and to calculate infrastructural parameters such as network lengths. In Germany, the 

OSM data is often more detailed than commercial products, although the worldwide coverage and the 

level of detail are variable [34]. For spatiotemporal analyses of the settlement development we classify 
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three Landsat images from 1973, 1989, and 2000 and a TerraSAR-X strip map image from 2009. 

Based on the classification results the periods of building construction are estimated. 

Besides the remote sensing and ancillary geo-data, several ground truth data and reference 

information are also included to validate the results. The ALK includes building geometries based on 

high accuracy terrestrial measurements. Additionally, legal boundaries are included, for example small 

multi-family houses are represented by separated polygons [24]. The German Official Topographic 

Cartographic Information System (ATKIS) includes thematic information about built-up areas (ATKIS 

code 2100), subdivided into residential areas (2111), industry and trade (2112), mixed use (2113) and 

areas with special functions (2114) at building block level [35]. For the validation of a structural type 

classification the class codes 2112 and 2114 are combined to non-residential because an energy-relevant 

distinction of the building inventory is made between residential, mixed, and non-residential buildings. 

Detailed in situ field survey data concerning the annual heat demand of the buildings located in the test 

site are provided by an engineering company [36]. The buildings‘ heat demand is estimated by a 

building-to-building evaluation of the heated building area, architectural components, and location of 

the building within the building structure. Additionally, network lengths are calculated that consider all 

buildings within the test site. The generated network graph also considers individual solutions for 

respective buildings. Table 1 gives an overview on the acquired remote sensing data, ancillary  

geo-data, and in situ information that cover the test site. 

Table 1. Overview of the used remote sensing data, ancillary geo data, and in situ information. 

Dataset/ Sensor Characteristics 

Geometric 

Resolution/ 

Accuracy 

Acquisition 

Date 
Reference 

3K-camera remote 

sensing system 

3 non-metric stereoscopic cameras; 

imagery used for the derivation of a digital 

surface model; airborne 

Geometric resolution  

0.5 meter; vertical 

resolution 1 meter 

2007 [37-39] 

Ikonos 
Multispectral optical imagery (4 bands); 

space borne 
1 meter 2008 [40,41] 

OSM Street vectors 
Variable,  

cm–meter 
2010 [33,34] 

Landsat MSS 
Multispectral optical imagery (7 bands); 

space borne 
59 meter 1973 [42] 

Landsat TM 
Multispectral optical imagery (7 bands); 

space borne 
30 meter 1989 [43] 

Landsat ETM+ 
Multispectral optical imagery (7 bands); 

space borne 
30 meter 2000 [44] 

TerraSAR-X SAR data; Strip Map Mode; space borne 3 meter 2009 [45] 

ALK 
German official land registry–automatic 

real estate map; terrestrial measurement 

Variable,  

cm–meter 
2010 [46,47] 

ATKIS 
German Official Topographic 

Cartographic Information System 
Variable, meter 2006 [35] 

PlanG 

Manual terrestrial evaluation of the 

buildings‘ heat demand and estimation of 

heat network lengths 

Building-by-building 

estimation 
2010 [36] 
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3. Theoretical Model for the Assessment of Small District Heating Systems  

To evaluate settlement areas with respect to district heating potentials, a detailed characterization of 

the building inventory in terms of the building types and structure as well as the spatial distribution of 

buildings is necessary [21]. Therefore, the evaluation of settlement structures for heating systems is 

based on several physical-structural components of built-up structures. In this context, the possibility to 

use pipeline-bound heating supply systems is primarily dependent on the amount of the local heat 

demand due to high monetary investments for the necessary heat infrastructure. 

The main parameter for the assessment is the annual heat demand of the buildings. The heat demand 

correlates with the heated building volume and a specific heat demand coefficient that depends on the 

level of insulation. The heat demand coefficient represents an idealized value, that can be described by 

the combination of building type, usage and age of a building ([24,29,48]). 

Additionally, the economic costs of the necessary heat allocation infrastructure are estimated: costs 

for the heating network, house connections to the buildings, and consumer stations for every building. 

To quantify only the additional costs for a district heating system, costs for a conventional heat supply 

(oil or gas boilers) are subtracted. With this information a specific value (P) can be determined, which 

characterizes the local conditions for district heating on building block level. By dividing the annual 

heat demand of the buildings by the required infrastructure investment costs, the achievable kWh/year 

per invested monetary unit [€] can be quantified: 
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where n represents the number of buildings per block, V [m
3
] the building volume, F a constant value 

which is dependent on the building type to reduce the whole building volume V to the heated volume, 

and q [kWh/(m
3
 year)] a specific heat demand coefficient which is determined by building type, usage 

and age of a building (see Section 5.1). The infrastructure costs for the small-scale heating network 

(CNET, [€]) are calculated on block level, while the house connections to the buildings (CCON, [€]), 

consumer stations (CCS, [€]), and cost of a conventional heat supply (CCHS, [€]) are calculated 

separately for each building. As the analyses are primarily performed on building structures that 

already have heat supply, the residual values of the existing boilers are considered. This is based on the 

assumption that the money that must be invested for a new conventional heat supply can be substituted 

in order to install the infrastructure for a district heating network. For the residual values an estimated 

value of 0.5 is assumed. This value represents an averaged value for the whole building inventory and 

implies that the existing oil and gas boilers have reached half of their technical life expectancy.  

For a more detailed economic assessment of the infrastructural components listed in Equation (1), 

different technical life expectancies of the respective components could be considered. However, as we 

primarily aim for a characterization of settlement structures such a differentiation is not essential. 

Furthermore, we do not focus on specific heat generation technologies therefore the evaluation is based 

on the physical structural components of individual settlement structures without considering the 

location and cost of virtual heating stations. This is significant because biogas plants are more likely to 
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be installed outside of settlement areas, whereas cogeneration stations are already used to revitalize 

inner-city fallow areas [49]. 

4. Characterization of Settlement Structures by Means of Remote Sensing and Geo-Data 

For the calculation of the model parameters several methodological steps based on different remote 

sensing and geo-data are performed. Figure 1 gives an overview of the data used in this study, the 

processing steps and the combination of the derived information for defining the district heating 

potential. The main processing steps are subsequently described in more detail.  

Figure 1. Data base and processes for the calculation of district heating potentials. 

 

4.1. Derivation of 3D City Model and Physical Parameters of the Urban Environment  

The latest generation of optical satellites—e.g., Ikonos—provide data with a very high geometric 

resolution that makes it possible to identify even small urban structures such as single buildings or 

streets. Nonetheless, monoscopic spaceborne satellite imagery is mostly limited to 2-D analyses. Albeit 

methods exist that estimate the building heights through the lengths of their shadows [50], these 

methods are restricted by various limitations such as building density, sun angle and sun azimuth. 

DSM‘s provide detailed information about the third dimension of a study area. 
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The following workflow describes an approach for extracting sufficient information about urban 

objects. While highly detailed land cover information can be extracted by optical satellite imagery, 

further differentiation of the urban morphology is achieved by utilizing 3-D information. An  

object-based image segmentation and classification approach is developed to retrieve such information 

on a very high level of detail based on very high geometric resolution optical satellite imagery and a 

DSM. This approach can be transferred to analyze area-wide large regions. The methodology is 

implemented as a modular solution, which allows analysis of multisensoral data to a proper 

representation of the urban fabric in terms of a 3-D city model. In general, an object-based framework 

is applied to the optical satellite imagery and the DSM for a detailed description of the urban 

landscape. The method for the extraction of the relevant information in terms of land use/land cover 

(LU/LC) classification is presented in detail by [51]. Data pre-processing was done applying geometric 

and atmospheric correction to the satellite imagery followed by orthorectification using digital aerial 

orthoimages as a spatial reference for ground control point measurements.  

The first image analysis step focuses on the extraction of building footprints by means of image 

segmentation and object-based image classification of the DSM. To achieve this goal, the geometries 

of individual building blocks are derived from the OSM street geometries. For each of the building 

blocks, segmentation is applied to generate ‗real world‘ image objects representing individual 

buildings. In this manner, the derived building blocks are used to calculate small-scale statistical values 

on the height information of the DSM to individually adjust the segmentation parameters. 

Subsequently, image objects which represent buildings are identified based on shape, neighborhood 

and height criteria. For each of the buildings the relative height information is retrieved as a 

relationship between the absolute, average height of the building object and the surrounding area.  

The result of the processing steps is a ‗building mask‘ representing individual building objects 

including their heights. This building mask is integrated into the second analysis step where the optical 

data are first segmented into image objects by means of an image segmentation optimization workflow 

developed by [52] and then classified based on a method presented by [53]. The result of the combined 

analysis of spectral information and height information is a detailed LU/LC classification of the 

covered area of Oberhaching. Additionally, ancillary data are integrated into the workflow in terms of 

imported information about ‗streets‘ from OSM for enhancing the classification accuracy. The derived 

LU/LC classes are ‗buildings‘, ‗bare soil‘, ‗grassland/meadow‘, ‗streets‘, ‗other impervious surfaces‘, 

‗trees/shrubs‘, and ‗surface water‘.  

Subsequently, the LU/LC classes are utilized to determine characteristic structural parameters on block 

level namely ‗percentage of imperviousness‘ (ratio of respective areas of the relevant thematic LU/LC 

classes ‗buildings‘, ‗streets‘, and ‗other impervious surfaces‘ and affiliated block area), ‗building density‘ 

(ratio of respective areas of building footprints and affiliated block area) and ‗floor-space index‘ (product 

of estimated floor number [51] and area of respective building footprint divided by area of affiliated block 

area), which are integrated in the structure type classification in the next section.  

4.2. Derivation of Building Types and Structure Types 

The volume specific heat demand of a building correlates with physiognomic building 

characteristics as well as the usage of a building ([24,29]). The dependency of the heat demand with 



Remote Sens. 2011, 3                    

 

1456 

respect to physiognomic characteristics is primarily due to building size and shape. In principle the heat 

loss of a building is lower for large buildings than for smaller buildings with the same shape [54]. Also 

compact buildings with a small ratio between surface and volume have a relatively low heat loss [48]. 

Additionally, a distinction between residential and non-residential buildings due to the characteristic 

heat demand has to be made [29]. In this manner, the effective areas of buildings like office, industrial, 

and administration buildings have primarily a non-residential usage in contrast to buildings that are 

primarily used for residential purposes like detached houses, etc.  

Therefore, a functional separation between physiognomic building characteristics and usage 

components is performed, to ensure that buildings initially get identical heat demand coefficients if 

they have a similar geometry. Then, this value is altered in dependence of assigned usage components. 

This separation is necessary because a discrete separation of the building inventory due to usage 

characteristics for individual buildings can hardly be predicted with remote sensing data, but it can be 

described when combining structural characteristics on building block level. 

To subdivide the building inventory with regard to energy-relevant physiognomic building 

characteristics such as area, height and compactness and to determine characteristic values of these 

building parameters for individual building types an unsupervised classification is performed [25]. This 

is done separately for each of these parameters using the expectation–maximization algorithm (EM) of 

the open source software WEKA [55]. The EM cluster algorithm represents an iterative approach and 

analyzes the probability of membership of the individual values of the parameters to initial cluster 

centers. Following this, the clusters are altered to increase the probability of membership [56]. To 

reach a high level of detail the generated clusters are combined and this results in 26 clusters. 

Subsequently, the derived building clusters are aggregated to potential building types (residential or 

non-residential usage; Figure 2(a)) by manual inspection utilizing information from the ALK, in order 

to distinguish whether the extracted building polygons represent one or more single buildings (see also 

Section 4.4), and in situ information from the engineering office. The potential building types and the 

affiliated semantic annotation are an initial categorization of the building inventory in order to link the 

extracted building polygons to distinctive building types revealed in the reference studies which consist 

of single and semi-detached houses (DH), small and large multi-family houses (MFH), tower blocks 

and small, medium, and large non-residential buildings (N-RB) [24,29,48]. In this regard, the affiliated 

heat demand coefficients of the buildings are later determined in combination with assigned usage 

components (see next paragraph and Section 5.1). However, based on the distinctive building geometry 

large non-residential buildings can be identified at this point.  

As described, the specific heat demand is also significantly affected by the use of a building. 

Analogous to [29] a differentiation between residential and non-residential buildings is performed. In 

Germany, buildings that are solely used for residential purposes can be found in almost all types of 

settlement areas but the share is lowest for industrial areas and inner city structures and highest for 

outer residential areas. Buildings with mixed use (residential, commercial) can often be found in dense 

urban areas, for example with commercial usage on the ground floors and apartments on the top 

floors [22]. To consider such complex usage components, structure types that represent characteristic 

built-up structures have been derived and which form spatial units that can be described by e.g., 

characteristic land cover and type of urban fabric [57].  
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Figure 2. Derived information layers for an energy-relevant characterization of the 

settlement area. (a) Classified potential building types for individual buildings, 

(b) classified structure types on building block level, (c) derived periods of construction on 

building block level. 

 

The structure type classification and the parameterization of the utilized features (dominating 

building types, percentage of imperviousness, building density and floor-space index) adapts the 

structure types, which are revealed by [29,58]. The structure types of [29,58] in turn are based on the 

initial studies of [17-19]. For characterization of the settlement structure, four basic types are 

differentiated: residential built-up structures for non-urban (ST II), e.g., villages and suburbs, and 

urban (STIII) areas, further divided into areas of medium density (STIIIa) and areas dominated by 

dense and very dense built-up structures (ST IIIb). Additionally, areas of industrial and commercial 

usage (ST IV) are characterized. The affiliated characteristic shares of usage are shown in Table 2 and 

the specific costs for the infrastructure are revealed in Table 4. 

Table 2. Characteristic shares of residential and non-residential buildings for the structure 

types. Source: [29]. 

Usage ST II ST IIIa ST IIIb ST IV 

Residential buildings 0.97 0.71 0.70 0.10 

Non-residential buildings 0.03 0.29 0.30 0.90 

The classification for the study area reveals that non-urban structures are dominating the settlement 

area. Noticeable are also the related industrial and commercial areas in the North West, while dense 

and very dense built-up structures (ST IIIb) are not classified within the test area (Figure 2(b)).  
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4.3. Period of Construction 

The volume specific heat demand of a building correlates strongly with its age. For Germany, the 

heat demand of older buildings is in general higher than the heat demand of younger buildings. This is 

primarily due to missing legal thermal insulation regulations, which were first established in 1978 [48]. 

The lack of appropriate construction material, in combination with a high demand in the construction 

sector in the years after the Second World War, entailed disproportionately high heat demands for 

buildings constructed in this period. Induced by the oil price crises in the 1970s, better insulated houses 

were built. Hence, for the subsequent construction periods a constant decrease in the buildings‘ heat 

demand can be assumed [29].  

As high geometric resolution satellite data are only available from 1999, long-time time-series for 

classification of building ages is dependent on medium geometric resolution data such as Landsat. An 

object-based classification algorithm was developed using a decision tree ([59,60]) to extract urbanized 

areas from Landsat imagery. After a multi-resolution segmentation, the classes are identified 

hierarchically, starting with classes of significant separability from other classes (such as water and 

vegetation) and ending with those of lower separability (urban and soil). In addition to this the 

classification algorithm uses a temporal hierarchical scheme. This means that the classified urban 

footprint for a past time step is used as a spatial condition when classifying urbanized areas for the 

most recent time steps. Subsequently, change detection is applied to spatially and temporally identify 

urban growth on a maximum scale of blocks or quarters since the geometric resolution of the utilized 

Landsat images restricts analyses on building level. Often, building blocks and quarters represent 

spatial units with a homogenous construction period [24] which compensates the limitations that are 

induced by the geometric resolution of the sensors. The result of the described post-classification 

change detection method is shown in Figure 2(c).  

The classified periods of construction only partially correspond with usual building age 

typologies [24,29,48], since these categories implement various additional characteristics which cannot 

be reflected or gained by means of remote sensing data. To use the reference values of the specific heat 

demand coefficients for the analysis, the weighted arithmetic mean between the heat demand in the 

different periods of construction and the absolute number of buildings in Germany is calculated to get 

new specific heat demand values for the four derived periods of construction.  

4.4. Derivation of Infrastructural Parameters  

To calculate the number of consumer stations and the amount of conventional heat supply 

infrastructure elements (oil or gas boilers), an estimation of the legal number of houses based on the 

extracted building polygons has to be made. This is due to the finding, that the extracted building 

polygons derived from remote sensing data do not necessarily represent the legal number of houses. 

For example, in contrast to single detached houses the legal boarders of small multi-family houses are 

not represented by the extracted building polygons (Figure 3(a)). The legal numbers are estimated by 

selecting random polygons of the different building types and annotating the legal number of houses 

based on the ALK data. In a second step the average number for each building type is calculated and 

converted to the curvature/length ratios [61] of the polygons. This parameter turned out to be robust for 

strongly and less strongly structured buildings.  
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Figure 3. Calculation of infrastructural parameters. (a) Polygons of different buildings 

types that do not necessarily represent legal building borders; (b) Network graph generated 

by using a minimum spanning tree; (c) Calculation rules for several building types and 

location/orientation constellations.  

 

For the calculation of the length of the district heating network, street vectors can be utilized since 

district heating pipes are normally installed along existing streets [29]. To generate a graph that 

represents the shortest connection for all buildings along the streets a euclidean minimum spanning 

tree is utilized. First, points that represent virtual intersections of the shortest connection from every 

building to the nearest street sections are generated based on an Euclidean distance metric. Then, a 

graph is generated that connects all virtual intersections within the test area, minimizing the distance 

[Figure 3(b)]. To calculate the necessary network length per building block, the graph is spatially 

disaggregated based on topological relations. If blocks share a network section, the length of the 

network section is equally divided. Network sections that are only tangent to one building block are 

completely ascribed to it. Network sections that represent connections between non built-up areas are 

not considered for further analysis. At the same time this approach implies that all buildings within a 

study area are considered and a consistent network graph is generated for related built-up areas.  

Based on the Euclidean distance from each building to the closest street section the house 

connections for each building are calculated. Additionally, the orientation of buildings are considered 

to implement several calculation rules dependent on building type, orientation and location within the 

building structure (Figure 3(c)). Polygons that represent only one building (e.g., all polygons of the 

building class ‗single detached house‘) are assigned the shortest distance between building and street 

section (1). For all polygons that represent more than one building, the following rules are applied: If a 
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polygon is located parallel to a street and if its distance to the street (x) is shorter than the distance to 

the estimated next legal building border (y), the shortest distance between building and street is used 

(2). If the buildings distance to the street (x) is longer than the distance to the estimated next legal 

building border (y), the distances between the estimated building borders are added to the distance 

between building and street (3). Analogously, this calculation rule is also used if the building is not 

parallel to the street (4).  

5. Evaluation of the Local Potential for District Heat 

5.1. Heat Demand of the Buildings  

For the calculation of the buildings‘ heat demand the extracted information layers are combined. 

First the buildings‘ volume (V) is reduced to the heated volume by multiplying a constant value (F; see 

Formula 1). The estimated values adapt the values used in [24] and imply that for smaller buildings—in 

relation—less volume is heated as compared to larger buildings. The following values for F are 

assumed: 0.7 for detached and semi detached buildings, 0.75 for small multi-family houses, 0.8 for 

large more family houses and large non-residential buildings, and 0.85 for tower blocks. 

The heated volume is multiplied with a specific heat demand coefficient, which is dependent of 

building type, structure type and period of construction. To use the specific heat demand coefficients of 

several reference studies [24,29,48] the values have to be converted from area [kWh/(m
2
 year)] to 

volume [kWh/(m
3
 year)]. Hence, a factor based on official statistical references [62] is calculated: for 

residential buildings 1 m
2
 living area corresponds to 4.56 m

3
 building volume and for non-residential 

buildings 1 m
2
 effective area corresponds to 6.12 m

3
 building volume. The composed heat demand values 

are shown in Table 3. Only large non-residential buildings are not further differentiated because a valid 

differentiation due to building age is limited, since large non-residential buildings have quite 

heterogeneous heat demand characteristics [63]. Therefore, an idealized and averaged value is assumed [29]. 

In order to illustrate the derivation of the residual respective heat demand coefficients an example 

calculation is performed: If a potential ―single detached house‖ respective ―small non-residential 

building‖ is located in an area classified as ―industrial/commercial‖ (ST IV) and was constructed 

before 1974, the specific heat demand coefficient is composed of the product of the specific heat 

demand coefficient of a single detached house (45.6 [kWh/(m
3
 year)]) and the share of residential 

buildings in this structure type (0.1; Table 2), and the product of the specific heat demand coefficient 

of a small non-residential building (24.8 [kWh/(m
3
 year)]) and the share of non-residential buildings in 

this structure type (0.9; Table 2): 45.6 [kWh/(m
3
 year)] × 0.1 + 24.8 [kWh/(m

3
 year)] × 0.9 = 26.9 

[kWh/(m
3
 year)]. This value is quite similar to the initial heat demand coefficient of a ―small  

non-residential building‖. In contrast, the heat demand coefficient for structure type ST II is very close 

to the initial value of a ―single detached house‖ since this structure type is primarily characterized by 

residential usage (0.97; Table 2).  
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Table 3. Specific heat demand coefficients vary as a function of building type, structural 

type and period of construction. 

Single detached house/small non-residential building 

Period of 

construction 

Specific heat demand 

coefficient  

[kWh/(m
3
 year)] for 

structure type ST II 

Specific heat  

demand coefficient  

[kWh/(m
3
 year)] for 

structure type ST IIIa 

Specific heat  

demand coefficient  

[kWh/(m
3
 year)] for 

structure type ST IIIb 

Specific heat  

demand coefficient 

[kWh/(m
3
 year)] for 

structure type ST IV 

≤1973 45.0 39.6 39.4 26.9 

1974–1989 36.7 33.5 33.4 26.1 

1990–2000 27.7 27.0 26.9 25.1 

2001–2009 15.6 18.1 18.2 23.8 

Semi-detached house/small non-residential building 

≤1973 42.6 37.9 37.7 26.7 

1974–1989 40.2 36.1 36.0 26.5 

1990–2000 26.0 25.7 25.7 24.9 

2001–2009 15.6 18.1 18.2 23.8 

Small multi-family house/small non-residential building 

≤1973 36.7 33.5 33.4 26.1 

1974–1989 32.0 30.1 30.0 25.6 

1990–2000 26.0 25.7 25.7 24.9 

2001–2009 14.5 17.3 17.4 23.7 

Large multi-family house/medium non-residential building 

≤1973 36.5 32.7 32.5 23.7 

1974–1989 30.7 28,4 28.4 23.1 

1990–2000 19.6 20.3 20.3 21.9 

2001–2009 14.5 16.5 16.6 21.4 

Tower block/medium non-residential building 

≤1973 24.6 24.0 24.0 22.5 

1974–1989 25.6 24.7 24.7 22.6 

1990–2000 24.1 23.6 23.6 22.4 

2001–2009 21.9 22.0 22.0 22.2 

Large non-residential buildings 

≤2009 21.6 21.6 21.6 21.6 

5.2. Investment Costs 

The costs for the calculated absolute number of consumer stations and for conventional oil/gas 

boilers are differentiated due to the structure types with the linked usage components of the buildings. 

For the costs of oil/gas boilers the estimated residual value of 0.5 is already considered (Table 4). 

Analogously, the mean installation costs for the main heating network and house connections to the 

buildings are calculated depending on the structure type, whereas the installation costs are higher for 

dense than for less dense settlement structures. The revealed costs also depict supply cases with a 

characteristic nominal diameter for several structure types and are differentiated by main heating 

network and house connections [29].  
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Table 4. Costs per structural type for consumer stations and conventional oil/gas boilers, 

main heating network, and house connections. Source: [29]. 

Structure 

type 

Consumer  

station [€] 

Conventional 

oil/gas boiler [€] 

Main heating 

network [€/m] 

House connections 

[€/m] 

ST II 2,602 3,281 260 233 

ST IIIa 4,163 4,862 311 270 

ST IIIb 4,290 5,364 316 270 

ST IV 4,400 6,648 286 186 

Residual costs for gas networks that possibly exist are not considered. Their costs are only about 

15% of the cost of a new heating network, if assumed that the installation cost of a gas network is 

about half of the installation cost of a district heating network and the gas network is already 

depreciated by two thirds. Nevertheless, an existing gas network would inhibit the installation of a 

district heating network in practice. 

6. Result and Discussion 

6.1. Evaluation of the Potential for District Heating 

The result of the analysis is a spatially differentiated evaluation of physical-structural potentials for 

district heating systems based on remote sensing data (Figure 4). On building block level built-up 

structures are identified which are more suitable for the installation of district heating systems 

than others.  

Figure 4. Assessed potentials for district heating for the test site (Oberhaching, Germany). 
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The settlement area of the test site is characterized by areas that have homogenous potentials as well 

as areas that have a heterogeneous structure in terms of their district heating suitability. In particular, 

blocks with very large and commercially used buildings (industrial and commercial areas in the North 

West) have the highest potentials. These are supplemented by blocks in the core of the settlement area. 

The potentials are several times higher than for blocks at the border of the settlement area, which are 

dominated by detached and semi-detached houses. When also considering blocks in the second or third 

highest classes, related areas can be identified and prioritized for planning applications. Analogously, 

areas can be identified that show comparatively unfavorable characteristics due to their built-up 

structure. Based on the quantitative potential, decision-making can be substantially supported enabling 

decision makers to decide whether to supply these structures in a reasonable cost-value ratio.  

6.2. Accuracy Assessment  

The accuracy assessments of several classifications, derived information layers and model 

parameters are based on different reference data. The respective reference data and the results are 

compared as seen in Table 5. 

Table 5. Results and respective reference data set. 

Result Building Area Building Height Land cover Building Type Structural Type 

Reference 

data 
Ikonos, ALK 

In situ; Floor 

number of 150 

buildings 

Ikonos 

ALK; In situ 

information 

engineering office 

ATKIS 

Result 
Period of 

construction 
Heat demand 

Legal 

building 

number 

Length of main 

network 

Length of house 

connections of 

buildings 

Reference 

data 

Respective 

input image 

In situ information 

engineering office 
ALK 

In situ information 

engineering office 

In situ information 

engineering office 

The automatically generated building mask achieved a producer accuracy of 82.0% and a user 

accuracy of 88.2%. Thus, whilst the buildings can be detected reliably, a reclassification of false or 

unclassified building segments was performed due to the assumption that the highly detailed  

building-related analyses need a higher accuracy. Compared to building areas of the ALK, the areas of 

building polygons based on the remotely sensed data are approximately 8% overestimated. This is due 

to the fact that building areas of the ALK represent building footprints, while the extracted building 

polygons primarily represent the roof area.  

For assessing the accuracy of the building height estimation, in situ data was collected detailing the 

number of floors of 150 buildings. Overall the in situ data for 36.3% of the buildings completely 

corresponded with the estimated heights; however, it was observed that for 17.5% of buildings were 

overestimated by one floor and 32.4% were underestimated by one floor. Hence, with a maximum 

deviation of one floor an overall accuracy of 86.2% can be achieved. The overall underestimation of 

the building heights can especially be observed for small buildings with one or two floors. The 

estimated heights of these buildings correspond completely for 44.3%, while for 11.5% an 

overestimation of one floor and for 42.6% an underestimation of one floor, is observed. These 
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deviations are primarily due to the variable quality of the DSM, since matching errors of the 

stereoscopic images occurred at the border regions of the test site.  

The remaining thematic classes of the land cover classification, except ‗surface water‘, are used to 

derive structural parameters on building block level. The achieved user‘s and producer‘s accuracies of 

the land cover classes ‗bare soil‘, ‗grassland/meadow‘, ‗streets‘, ‗other impervious surfaces‘, 

trees/shrubs‘, and ‗surface water‘ are 86.9%/89.5%, 90.4%/98.5%, 84.1%/90.0%, 76.8%/86.0%, 

97.1%/82.5%, and 100.0%/100.0% respectively. The overall accuracy is 88.6% with a kappa coefficient 

of 0.86. 

The overall accuracy achieved for the building type classification is 85.0% with a kappa coefficient 

of 0.81. Separated for the different building types ‗single detached house‘, ‗semi-detached house‘, 

‗small multi-family house‘, ‗large multi-family house‘, ‗tower block‘, and ‗large non-residential 

building‘ the user‘s and producer‘s accuracies are 85.4%/88.0%, 85.7%/78.0%, 82.7%/91.0%, 

91.4%/85.0%, 66.7%/50.0%, and 69.2%/81.8% respectively. It should be noted that a valid assessment 

for the building class ‗tower block‘ is limited due to a small sample number and the errors are 

primarily induced by errors of the DSM. In addition, most of the misclassifications of the remaining 

building types are in favor of similar building types (e.g., classification ―single detached house‖; 

reference ―semi-detached house‖).  

The accuracy of the structure type classification has an overall accuracy of 95.0% and a kappa 

coefficient of 0.86. Thus, the validity of the accuracies especially for the types ―STIIIa‖and ―STIV‖ are 

limited due to the small sample size of the test site. The user‘s accuracy and producer‘s accuracy of  

the structure types ―STII‖, ―STIIIa‖, and ―STIV‖ are 97.0%/96.0, 80.0%/80.0, and 92.0%/94.4 

respectively. In this context, a reliable characterization of the settlement structure on the basis of the 

defined structure types is observed. It should be noted that the quality of the structure type 

classification is linked to the quality of the building type classification, as the building types are an 

important structural feature used for the classification. 

The user‘s and producer‘s accuracies of the ‗urban footprint‘ classifications for the time steps 1973 

(Landsat MSS), 1987 (Landsat TM), 2000 (Landsat ETM+), and 2009 (TerraSAR-X) are 

89.0%/87.3%, 91.0%/88.1%, 85.0%/89.7%, and 87.8%/81.8 respectively. 

The absolute value of the estimated heat demand (HDest) for 1,700 building polygons is  

112.3 GWh/year. This can be compared to a reference value (HDref) based on in situ information from 

the engineering company of 80.4 GWh/year [36]. This represents an overall overestimation of 

approximately 39.7%. A linear regression shows that for smaller buildings an underestimation and for 

larger buildings an overestimation can be observed. An inspection of buildings with strongly 

underestimated heat demand values shows that primarily an inexact acquisition of the building 

geometry leads to these deviations (especially the building height—see accuracy ‗height estimation‘). 

Contrary to this, the overestimation is primarily due to different assumptions for the specific heat 

demand coefficients, especially for older periods of construction, when compared to the specific heat 

demand coefficients used by the engineering company. Additionally, unheated parts of buildings such 

as garages cannot be identified with the presented method. Thus, the correlation coefficient (rHDest,HDref) 

of 0.74 shows a clear positive linear correlation of both data sets and would allow a calibration. For a 

relative, spatial assessment, both data sets are classified according to their respective deciles on 

building block level, so that one class represents 10% of the respective value range. Then, the 
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classified intervals are subtracted. The results show, that for 38% of the building blocks a relative 

correspondence can be stated. For 25% of the building blocks an underestimation of one class is 

observed, while for 19% an overestimation of one class is found. Hence, a relative spatial 

correspondence with a tolerance of one class is reached for 81% of the building blocks.  

The legal number of buildings and associated absolute number of consumer stations and oil/gas 

boilers, which are represented by a building polygon, is assessed based on information of the ALK. For 

the 1,951 building polygons of the test site 3,772 legal buildings were calculated, which is 15.5% 

higher than the building number of the reference data set (ALK: 3267). The inspection of 265 building 

polygons of several building types reveals a complete correspondence for 73.6%, an underestimation of 

one building for 7.2%, and an underestimation of two or more buildings for 1.9%. Correspondingly, for 

14% an overestimation of one building, and for 3% an overestimation of two or more buildings, can be 

observed which reflects the moderate overall overestimation of the calculated legal number. 

The lengths of the calculated main network and house connections are compared to the estimated 

length of the engineering company [36]. The calculated length for the main network is 54.9 km and the 

associated reference value is 51.8 km. This represents an overestimation of 6%. The calculated length 

for the house connections is 39.8 km and the associated reference value is 41.9 km. This represents an 

underestimation of 5%.  

7. Conclusion and Outlook  

Remote sensing and geo-data offers an extensive information base to evaluate the potential of 

different settlement structures for district heating systems. Based on high geometric resolution optical 

satellite data in combination with high-resolution digital surface models, a detailed source of 

information for the characterization and analysis of settlement structures is available. These sources of 

information are supplemented by medium geometric resolution data from the Landsat program and 

SAR data from TerraSAR-X for temporal analysis. Ancillary street geometries are integrated in order 

to calculate parameters of the small-scale heating network.  

Concerning the spatial coverage of the utilized data sets, it is possible to assess large area settlement 

structures. For country-wide analysis there can be limitations in terms of availability of the required 

input data. Based on the used data sources realistic quantitative potentials can be assessed and a 

relative evaluation can be performed with a high accuracy, respectively. Hence, settlement structures 

can be prioritized in terms of their usage potential for district heating systems. 

This study could demonstrate an efficient integrated use of remote sensing and GIS in the field of 

district heating analysis and shows the derivation of all relevant parameters at the presented level of 

detail by means of remote sensing and geospatial vector data. While the general paradigm—local 

decentralized community energy system, minimizing heat transportation distance, use of waste heat—is 

widely acknowledged and various individual studies exist, the methodology developed in this paper is 

one of the few which aims for a high transferability and applicability even for very large areas. We 

believe that this methodology can be applied to a complete country such as Germany and we are 

currently undertaking efforts to tackle such a mega-project [64]. Only such an ambitious project may 

put forward a massive replacement of unsustainable heating systems, the wide spread use of renewable 

energies and a reduction of the high losses of process heat. This research contributes to Germany‘s 
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energy mission in tackling the issue of an improved infrastructure for the German heat market. 

Although the detailed assessment of the methodology for the test site revealed over- and 

underestimations as compared to expensive engineering level data, this methodology will be further 

developed to exploit the potential benefits of increasing the proportion of energy provided through 

optimized energy systems. For a large-area application of this approach, a sensitivity analysis should be 

performed in advance in order to evaluate the required accuracy of the respective model parameters 

and consider the results for the choice of the basic input data. This could lead to a discussion about 

whether single parameters derived from remote sensing data can be substituted or gained by other 

geospatial data for reasons of data costs or accuracy. Nevertheless, the approach presented is 

independent of country-specific data, the basic data can be gained up-to-date and numerous new 

energy-related applications can be developed on a data base as deployed such as the assessment of 

endogenous energy potentials (biomass, solar potential, etc.) for a region.  

Therefore, it seems to be possible to optimize the planning for cities, towns and villages and to aim 

for a high proportion of renewable energy to improve efficiency and reduce CO2 emissions. In the 

medium term, district heat might become a more viable option for a sustainable future than it is 

today—GIS and remote sensing will contribute to this development. 
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