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Object-based image analysis (OBIA) has become very popular since the turn of the
century. For high-resolution situations, in particular, where the objects of interest
are larger than pixels, methods have been developed that build on image segmenta-
tion and on the further classification of objects rather than on pixels. Many studies
have shown that OBIA methods are, in principle, more transferable and reappli-
cable to other images. To obtain comparable results by reapplying a given rule set
on (slightly) changed conditions, the rule set must either be able to adapt to the
changed conditions or it must be parameterized for manual adaptation. In this
context, a rule set can be seen as the more robust the less it has to be changed, and
vice versa. In this article we introduce a new method to evaluate the robustness of
a rule set. The main assumption is that the amount of necessary adaptations can
be measured in conjunction with the quality of classification achieved. We demon-
strate that the method introduced is able to (1) evaluate the robustness of a rule set
and (2) identify crucial elements of a rule set that need to be reparameterized.

1. Introduction

Classical per-pixel image analysis tends to extract the content of an image by methods
of per-pixel image processing and classification. It is often hypothesized that pixel-by-
pixel classifications have limitations, especially with high-resolution imagery (Blaschke
and Strobl 2001). Since the turn of the twenty-first century, more than 100 satel-
lite sensors have been launched, including an increasing number of high-resolution
sensors, with the most recent WorldView-2 satellite being launched on 9 October
2009 with a spatial resolution of 0.46 m at nadir for the panchromatic band. For
high-resolution information, in particular, it is widely agreed that approaches are
needed that incorporate the spatial entities and relationships of the resulting pixels.
In a literature study, Blaschke (2010) identified 145 journal papers that build on a
recent approach known as object-based image analysis (OBIA). Sometimes the term
GEOBIA (geographic OBIA) is used when distinguishing Earth Observation (EO)
methods from other imaging fields. The idea of incorporating neighbourhood infor-
mation is much older. Various kernel functions and moving window applications have
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been developed over the years (Lillesand and Kiefer 2000). OBIA (for an overview see
Blaschke et al. 2008) goes one step further; instead of processing and classifying single
pixels according to their spectral values, image objects are generated. This is typi-
cally achieved through arbitrary image segmentation methods. The resulting segments
are expected to be relatively homogeneous compared to the surroundings. Burnett
and Blaschke (2003) called these segments ‘objects candidates’, which are to be rec-
ognized by further processing steps and to be transferred into meaningful objects. In
a classification process these segments serve as building blocks for further analysis,
readjustment of segments and finally an optimized segmentation. Meanwhile, there
is also a growing scientific literature on methodological concepts of OBIA. It is well
known that semantically significant regions are found in an image at different scales of
analysis (Hay et al. 2001, 2003), and OBIA is inextricably linked to multiscale analysis
concepts (Burnett and Blaschke 2003, Benz et al. 2004, Hay and Castilla 2008, Lang
2008), even if single levels are targeted for specific applications (Lang and Langanke
2006, Lang 2008, Weinke et al. 2008). Burnett and Blaschke (2003) called this OBIA
concept multiscale segmentation/object relationship modelling (MSS/ORM). Lang
and Langanke (2006) developed an iterative one-level representation (OLR), and
Tiede et al. (2008) successfully applied this OLR concept to airborne light detec-
tion and ranging (LiDAR) data for tree crown segmentation. It is widely agreed that
OBIA builds on older segmentation, edge detection and classification concepts that
have been used in remote sensing image analysis for several decades. Nevertheless, its
emergence has provided a new crucial bridge to spatial concepts applied in multiscale
landscape analysis, geographic information systems (GIS) and the synergy between
image objects, their radiometric characteristics and analyses of EO data (Blaschke
et al. 2008, preface). When analysing the content of an image, OBIA tries to simulate
the workflow of human visual image interpretation, first aggregating the spectral infor-
mation (of the pixels) into segments representing object primitives and then applying
predefined (expert) knowledge to the objects to be detected as well as to the image
data given. In this way, sensor properties together with imaging conditions and the
real-world objects’ properties determine the characteristics of each resulting image
object. In OBIA, these image object properties encompass at least geometrical, tex-
tural and colour-statistical properties. In addition, topological and scale relationships
among the image objects can be used for classification purposes (see Benz et al. 2004,
Hay and Castilla 2006, Platt and Rapoza 2008, Su et al. 2008). Thus, the first and
most obvious criterion for success of any OBIA approach is an appropriate image
segmentation method that is able to create adequate image objects. Second, for the
subsequent image analysis a well-defined rule set describing the classes of concern and
their respective properties is one of the key elements in OBIA.

In this article, we concentrate on an investigation of the robustness of rule sets. We
hypothesize that the demand for repeatability and transferability of image analysis and
image classification is increasing. The lack of transferability of per-pixel approaches
is one major factor of the commercial success of OBIA methods and software in
recent years. Concerning the applicability and transferability of rule sets, there are
few systematic investigations beyond software-specific and software-dependent appli-
cations (Smith 2008, Walker and Blaschke 2008). The central research question in our
investigation was to measure to what degree a given rule set is capable of providing
comparable results on other images. ‘Other images’ means either spatially different
scenes under similar imaging conditions or other sensor and imaging conditions but
similar land use situations compared to the reference image for which the rule set
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Robustness of fuzzy rule sets 7361

was originally developed. At first glance this constraint may seem to hamper a wider
use, but it is in compliance with the vast majority of remote sensing and image anal-
ysis strategies being developed over the past decades. It makes no sense to classify
completely different biogeographical or land use situations. For instance, it does not
make sense to apply classification rules developed for tropical forests to a tundra
ecosystem and vice versa. It may, however, be possible to transfer rule sets between
images of different sensors such as QuickBird (DigitalGlobe Corporate, Longmont,
CO, USA) or IKONOS and different atmospheric and seasonal conditions. As the
image objects derived from the segmentation act as the building blocks of the analy-
sis, it is important that they must be comparable. That is, the real-world objects to be
detected and/or analysed must be outlined in the images comparably with respect to
the images’ differences. When aiming for comparable image objects, there are a vari-
ety of potentially influencing factors with regard to the quality of a segmentation. It
has been successfully demonstrated that two of the most important and most obvious
factors, the spatial resolution and radiometric properties of the sensor, can be deter-
mined in advance and can be compensated respectively by adapting the segmentation
parameters accordingly (see Hofmann et al. 2008b). Others, such as differing illumi-
nation conditions and atmospheric conditions, are usually difficult to predict and thus
a matter for appropriate methods of image preprocessing. In this article, we focus on
the robustness of rule sets. For all investigations we assume that all influencing fac-
tors that are not determined by the real-world objects themselves can be compensated
when obtaining image objects of comparable quality. This includes techniques that
iteratively enhance an initial segmentation result by resegmenting or subsegmenting
image objects according to their spatial, spectral or topological properties or class
assignments. Thus, we assume that rule sets are to be applied on image segments with
best possible quality concerning the underlying image data.

2. Fuzzy rule sets and robustness

Fuzzy logic is a form of multivalued logic based on fuzzy set theory to perform
reasoning that is approximate rather than precise. We refer to binary sets with hard
decisions as crisp logic or crisp decisions, where the members of a set have a mem-
bership value of only 0 or 1. The term ‘fuzzy logic’ emerged as a consequence of
the development of the theory of fuzzy sets by Zadeh (1968). In fuzzy logic, the set
membership values can range between 0 and 1 (inclusively). The degree of truth of a
statement can range between 0 and 1 and is not constrained to the two logical val-
ues ‘true’ (= 1) and ‘false’ (= 0) as in classical predicate logic. When it is necessary
to switch between the two schemata we refer to ‘defuzzification’, ‘defuzzyfying’ or
‘crisping’ when resulting in crisp class membership values for a final decision.

2.1 Fuzzy rule sets in the context of OBIA

Fuzzy rules deal with uncertain, incomplete and/or vague information in order to
steer or control processes or to assign objects to fuzzy sets. Therefore, investigating the
robustness of fuzzy rules or fuzzy rule sets in general means to investigate their abil-
ity to handle unpredictable situations of the rules’ or rule sets’ scope of application.
Although a very limited number of scientists have used fuzzy sets for the delineation
and optimization of objects (Gorte 1998, Hu et al. 2005, Wuest and Zhan 2009), we
focus on the use of fuzzy logic for the classification of image objects. We hypothe-
size that their major advantage lies in their ability to deal with the uncertainty and
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7362 P. Hofmann et al.

vagueness that is inherent when classifying spatial entities to distinct, user-defined
classes (Bezdek and Pal 1992, Benz 1999, Hay et al. 2003, Benz et al. 2004). In
OBIA this is usually done by describing the desired classes as fuzzy sets of image
objects, where each class is described by at least one membership function defining
the degree of membership μ for each object depending on the objects’ values for a
selected property. Therefore, μ lies in the range 0.0–1.0. In this way, the membership
function describes the degree of fulfilment of a given condition concerning a prop-
erty that an object needs for being a member of the described class. That is, μ = 0.0
means no membership to the class of concern, and μ = 1.0 means the conditions for
membership are completely fulfilled. In practice, to crisp a classification result, a min-
imum threshold for μ is defined, where objects having a degree of membership below
this threshold are assumed not to be a member of the respective class. The types of
membership functions typically used can be categorized into the three groups, namely
fuzzy-greater-than, fuzzy-lower-than and fuzzy-range, where the shape of the func-
tions can vary (see figure 1). As indicated in figure 1, typical parameters to describe
a membership function are α, β and a . While α indicates the lower border concern-
ing a property p, β indicates the upper border, and a is the mean of the membership
function’s range v concerning p, that is:

a = α + (β − α)/2 (1)

v = β − α (2)

Particular classes are usually defined not only by a single property but also through
several fuzzy sets, where the membership functions for each property are combined
by the fuzzy-logic operators ‘fuzzy-and’ and ‘fuzzy-or’. For the ‘fuzzy-and’ operator
the degree of membership is usually given by the property with the minimum degree
of membership, and with the maximum degree for the ‘fuzzy-or’ operator. This way,
for class description only those feature-space spanning properties are used, which are
obviously necessary (see figure 2). In consequence, the resulting degree of member-
ship (i.e. the degree of fulfilling the classification conditions) that is assigned to each
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Figure 1. Typical representatives of (a) linear and (b) non-linear fuzzy membership func-
tions with μ as the degree of membership and p as the describing property. Displayed are
(i) fuzzy-greater-than, (ii) fuzzy-lower-than and (iii) fuzzy-range-functions with one maximum
membership (μ(a) = 1.0) and (iv) fuzzy-range-functions with a range of maximum membership.
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Figure 2. Example of a fuzzy rule set consisting of the classes A, B and C described by the
properties a, b, c, d, e and f with different membership functions and combinations of them.
For each property α, a and β are individually chosen.

object can be used to quantify the reliability of a classification (see Benz et al. 2004,
Definiens 2004). The combination of several fuzzy sets, that is a classification scheme
or a class hierarchy respectively, is called a fuzzy rule set. Applying a classification
scheme described by a fuzzy rule set yields for each object a degree of membership to
each class, where each object can be a fuzzy member of either no class, one class or
several classes. The latter case reflects the ambiguity of the classification or the class
descriptions, respectively. Although it can just reflect the reliability of a classification
result, assessing the ambiguities of a fuzzy classification is nevertheless also used as a
criterion of quality: the lower the ambiguity of a classification is, the higher the qual-
ity of a classification result is considered. Thus, the so-called ‘classification stability’
expresses for each object the difference of μ between the best and the second-best
class assigned (see Benz et al. 2004, Definiens 2004). Nevertheless, the ambiguity of
a class assignment depends on several factors; one of them is the capability of the
segmentation to outline the desired objects.

2.2 Robustness of rule sets in the context of OBIA

The terms ‘robust’ and ‘robustness’ are used in various contexts differently but with
more or less the same common understanding. For example, in software engineer-
ing, robustness expresses the ability of software to deal with errors or erroneous data.
In engineering a system, a component or a process is said to be ‘robust’ if it functions
even after faulty usage or under stressful environmental conditions (Pötzl 1996), which
means beyond its specification or operating environment. In the life sciences, a system,
organism or species is called ‘robust’ if it is tolerant against perturbation: ‘robustness
is a more general concept according to which a system is robust as long as it maintains
functionality, even if it transits through a new steady state or if instability actually
helps the system to cope with perturbations’ (Kitano 2007). In communication theory,
information theory and signal processing, a system or process is ‘robust’ if it is capa-
ble of processing perturbed information correctly. In this context, Ay and Krakauer
(2007) introduced a methodology to investigate the information flow over biological
networks. A comprehensive summary of the concept of ‘robust’ and ‘robustness’ is
given by Jen (2003).

To define what is to be understood as ‘robust’ in the context of OBIA as a subdisci-
pline of remote sensing and image processing (Hay and Castilla 2008), we understand
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7364 P. Hofmann et al.

the variability of the objects to be detected in different images as the perturbations for
a given rule set. This means a rule set is considered to be robust if it is able to cope
with the variability of the objects to be detected in varying images. For instance, a rule
set designed to identify land cover objects according to the European-wide CORINE
(Coordinated Information on the European Environment) land cover scheme from
IKONOS images is expected to contiguously map CORINE classes from arbitrary
IKONOS scenes with equal classification quality. However, the CORINE scheme is
valid for the whole of Europe and for all seasons, which means the rule set must
be capable of coping well with the respective regional and seasonal variations of the
desired CORINE classes in the IKONOS data. We therefore understand the robust-
ness of a rule set in OBIA for a given scope as the ability to (re)produce classification
results with equal quality in different but comparable image data that have been
preprocessed and segmented with comparable quality.

3. Quantifying the robustness of fuzzy rule sets

To quantify the robustness of a given rule set, it is indispensable to define what is to
be understood as more and as less robust. As stated in §2, a robust rule set must be
able to achieve classification results of comparable quality for image data with compa-
rable characteristics. The quality of classification results in remote sensing is typically
estimated through a (random) comparison of the results with a reliable mapping of
the classified site or an ad hoc manual interpretation of random points selected. For
per-pixel classifications, the vast majority of methods can be characterized as the
random point method described by Story and Congalton (1986); for an overview
see Congalton and Green (1999). Only more recently have a significant number of
scientists encountered problems when applying the same methods to the resulting
objects (Zhang et al. 2005, Albrecht 2008, Grenier et al. 2008, Platt and Rapoza
2008). Objects are technically polygons or, when addressed in a raster domain, regions.
At present, a variety of classification quality measures exist that indicate the confor-
mance and non-conformance of the classification results with the reference mapping
(ground truth), but this is a developing field (Blaschke 2010). In principle, this confor-
mance can be expressed either class-wise or globally. It is usually expressed within an
interval of 0.0 (non-conformance) to 1.0 (absolute conformance) (see Congalton and
Green 1999, Lillesand and Kiefer 2000, ISO/TC 211 2003, Benz et al. 2004, Definiens
2004). Schiewe and Gähler (2008) proposed the so-called Fuzzy Certainty Measure
(FCM), which takes uncertainties in the reference data and the classification results
into account respectively.

In the following section we assume that the quality of a classification result to
be defined globally is given by an arbitrary quality criterion q with a value of
0.0 ≤ q ≤ 1.0. To quantify the robustness r of a rule set R we consider the follow-
ing: let Rr be the initial rule set that has been developed on the reference image Ir and
applied on Ir with quality qr. When reapplying Rr to a number of comparable images
Ii (with 1 ≤ i ≤ n), we obtain for each image a classification result with quality qi. Each
of them is either different from or equal to the quality qr achieved in Ir. We can then
consider three general scenarios for evaluation:

Scenario (a): The initial rule set Rr is not adapted because the quality qi of the
classification result in Ii is at least as good as in the reference image; that is,
Rr = Ri and qi ≥ qr.

Scenario (b): The initial rule set Rr is going to be adapted until the quality of the
classification result in Ii is at least as good as in the reference image; that is,
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Robustness of fuzzy rule sets 7365

before adaptation we have Rr = Ri and qi < qr and after adaptation we have
Rr �= Ri but qi ≥ qr.

Scenario (c): The initial rule set Rr has been changed to Ri but the quality of the
reference classification could not be achieved; that is, Rr �= Ri and qi < qr.

3.1 Quantifying deviations in quality of classification results

Evaluating the robustness ri of an unchanged rule set that has been applied on image
Ii (i.e. R = Rr = Ri), the robustness concerning this image can be expressed by the
ratio of the quality values:

ri = qi

qr
, (3)

for qr > 0.0, where the greater ri is the more robust the rule set is concerning image Ii.
This is equivalent to Kitano’s evaluation function for biological robustness. Moreover,
for ri > 1.0, a better result in Ii can be achieved and vice versa for ri < 1.0. For all the
images In under investigation, the mean robustness can be expressed by:

r = 1
n

n∑
i=1

ri, (4)

which means the greater r the more robust R is for qr > 0. Furthermore, this method
can be applied to measure r if the inequality for q in scenario (a) is not fulfilled.

3.2 Quantifying the deviation of adapted rule sets

Concerning scenarios (b) and (c), the original rule set Rr has been changed for image
Ii either until qi ≥ qr could be achieved or not. Therefore, a new rule set Ri was created
with Ri �= Rr. By detecting all differences between Rr and Ri, that is by summing all
adaptations performed, we obtain a measure for the deviation d of Ri from Rr. As
we are focusing on fuzzy rule sets we have to consider the following potential types of
adaptation:

Type C. Adding or removing (or deactivating) a class.
Type O. Change of the fuzzy-logic connection of membership functions; that is,

switch a fuzzy-and operator to a fuzzy-or operator and vice versa.
Type F. Adding, removing (or deactivating) or changing an already existing fuzzy

membership function.

Consequently, we can write for d:

d =
c∑

i=1

Ci +
o∑

i=1

Oi +
f∑

i=1

Fi, (5)

where c indicates the number of all adaptations of type C, o indicates those of type O
and f those of type F; Ci is the ith adaptation of type C, and similarly for the other
types. Adaptations of type F can be differentiated further for quantification purposes:
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7366 P. Hofmann et al.

to reduce the potential complexity we assume that membership functions describing
μ(p) are only used once per class. We can then subdivide the changes of type F into
two further types:

Type Fa: Adding, removing (or deactivating) a membership function or changing
the type of a membership function from:

fuzzy-greater to fuzzy-lower and vice versa
fuzzy-range to fuzzy-greater or fuzzy-lower and vice versa
linear to non-linear shape and vice versa

Type Fb: Changing the range v of a membership function; that is the type and
shape of the function remain unchanged but the function is shifted and/or
stretched or compressed along the p-axis (see figure 3).

For the investigation of the robustness of a rule set, the quality of Fa and Fb is differ-
ent: changes of type Fa involve changing the semantics of a membership function with
respect to the class description by either changing the feature space (adding and/or
removing) or changing the type of the membership function. Changes of type Fb are
just changes of the position and/or extent of a class in the feature space. They can
therefore be understood as value adjustments but the principal semantics of the mem-
bership function remains as it was. Therefore, to quantify the deviation of Ri from
Rr for changes of type Fa, it is enough to summarize them. However, for changes of
type Fb we have to measure the amount of change concerning the parameters a and
v of each membership function, that is we have to measure shifts, stretches and/or
compressions of the membership functions. This can be done by either measuring
their absolute change �a and �v or their relative change δa and δv. The latter has
the advantage of being independent of the properties’ differing value ranges. Hence,
for each membership function we have to consider shifting-changes δa and stretching-
changes δv by taking the parameters ar and vr in the reference rule set Rr and the
adapted parameters ai and vi of the corresponding membership function in rule set Ri

into account:

0.0

1.0

before adaptation after adaptation shifted and stretched

after adaptation shifted

µ

after adaptation shifted and compressed

α βα' β'α' β'α' β'

Figure 3. Some examples of changes of type Fb for a given membership function (blue). The
colours indicate different kinds of change of type Fb; α

′
, β

′
indicate the respective changed lower

and upper border of the function after adaptation.
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Robustness of fuzzy rule sets 7367

δa =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − ai

ar

)
for ai > ar (positive shift)

0 for ai = ar (no shift)(
1 − ar

ai

)
for ai < ar (negative shift)

δv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − vi

vr

)
for vi > vr (stretch)

0 for vi = vr (linear shift)(
1 − vr

vi

)
for vi < vr (compression)

and (6)

with ar �= 0 for positive shifts and ai �= 0 for negative shifts. For the case vi = 0 and/or vr

= 0 a change of type Fa (changing the type of a membership function) is given because
there was or is no membership value range of 0.0 ≤ μ(p) ≤ 1.0 given for p; that is, the
membership function of the reference rule set has been changed to a crisp single value
rule (vr �= 0 and vi = 0) or a crisp single value has been changed to a membership
function (vr = 0 and vi �= 0). The relative change δF of a fuzzy membership function
F is then given by:

δF = δa + δv (7)

Finally, we can measure all deviations of rule set Ri from Rr by summing them:

d =
c∑

i=1

Ci +
o∑

i=1

Oi +
fa∑

i=1

Fa
i +

fb∑
i=1

δFi (8)

where f a indicates the number of changes of type Fa (adding or deleting a membership
function) and f b indicates the number of relative changes of type Fb (shifting and/or
stretching along the p-axis) and δFi is the ith relative change of type Fb, that is of a
fuzzy membership function as defined in equation (7). For practical applications, if
ai < 0 and ar < 0 is given, δa should be calculated inversely. Furthermore, for simple
changes of signs, that is ai = –ar, δa should be set to 1. Additionally, to avoid elimina-
tions when calculating d, each δF should be calculated by adding δv and the absolute
value of δa.

3.3 Quantifying the robustness by rule set deviations and quality deviations

To evaluate situations as described in scenario (c), that is rule set Rr has been changed
to rule set Ri with rule set deviation di and the quality qi of the classification of image
Ii could not achieve the respective quality of image Ir, the robustness ri concerning
image Ii can be described by:

ri = qi/qr

di + 1
(9)

and therefore the mean robustness r for all images investigated can be determined as
described in equation (4). It is clear that, when comparing equation (9) with equation
(3), if rule set Ri was not adapted, that is Ri = Rr, di equals 0.0 and hence equation (9)
is identical to equation (3), which means the robustness is only expressed by the ratio
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7368 P. Hofmann et al.

of the classification qualities achieved. In addition, for the situation where the classi-
fication result in Ii was better than in Ir and the rule set was not changed, ri is greater
than 1.0. Vice versa, the closer ri is to 0.0, the less robust Ri could have been applied
on Ii because either the deviation di between the reference rule set and the adapted
rule set was very high, or the quality of the reference image could hardly be achieved
(qi << qr). Further information that is derived automatically with equation (9) is the
relationship between effort and benefit, that is between the amount of adaptation of
R and the respective raising of quality: assuming the case qi >> qr. That is, in the
reference image Ir, only a poor quality compared to Ii could have been achieved but
therefore the rule set Ri is very different to Rr. The amount of deviations di between
Ri and Rr is then very high and therefore ri is still low. On the contrary, for the case
when the quality could have been raised dramatically with little effort, di remains very
low and ri rises.

3.4 Extensions by weighting rule set deviations

For some investigations the types of necessary adaptations might be of different rel-
evance in order to evaluate the robustness of a rule set; for example, removals or
additions of classes (type C) change the semantics of a rule set more than changing the
shapes of membership functions (type Fb). The types of adaptation can be weighted
respectively by individual weights wc, wo, wf a and wf b, that is equation (8) can be
extended to:

d = wc

c∑
i=1

Ci + wo

o∑
i=1

Oi + wfa

fa∑
i=1

Fa
i + wfb

fb∑
i=1

δFi (10)

In some cases individual adaptations are more important than others; for example,
the addition or removal of class C1 changes the semantics of a rule set more than that
of another class C2 or C3. Respectively, weighting single adaptations by individual
weights wi extends equation (10) to:

d = wc

c∑
i=1

wiCi + wo

o∑
i=1

wiOi + wfa

fa∑
i=1

wiFa
i + wfb

fb∑
i=1

wiδFi (11)

4. An approach to evaluating the robustness of fuzzy rule sets

Evaluating the robustness of a fuzzy rule set means at the first stage identifying and, if
possible, quantifying the deviation between a reference rule set Rr and an adapted rule
set Ri with respect to the deviation in classification quality. By doing so, for all inves-
tigated images In, we obtain a mean robustness as described in equations (9) and (4).
In the second stage, it is interesting to know the reasons for the observed deviations;
for example, why a certain class had to be added or why certain membership functions
had to be added, removed or changed. Evaluating these deviations yields two different
results: (a) the variability of the scope, for example, the variability of land cover classes
over time and region, or (b) revealing principal mistakes in the design of the rule set in
the assumptions made for the desired classes. For the latter case, a tabular analysis of
all deviations, especially those of type Fa and Fb, can subsequently lead to a specific
enhancement of the rule set design.

To prove this approach, a rule set was designed to identify and differentiate the
three types of form ‘triangle’, ‘circle’ and ‘square’ in appropriately segmented artificial
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Robustness of fuzzy rule sets 7369

images, as illustrated in figure 4. Then, a rule set Rr is developed that assumes that
the three classes can be differentiated by their colour. This rule set uses the reference
image Ir as shown in figure 4, consisting of three classes, namely ‘triangle’, ‘circle’ and
‘square’. Each class is described using the colour fraction of each RGB band. The
colour fraction indicates the relative brightness of a respective band against the mean
brightness of an object. In some software packages, such as Definiens eCognition
(Definiens AG, Munich, Germany), the colour fraction is expressed by the so-called
ratio of a band. The respective fuzzy membership functions for the properties ‘ratio
red’, ‘ratio green’ and ‘ratio blue’ are described in figure 5.

When classifying Ir with Rr we obtain a classification result of quality qr = 1.0. To
investigate the robustness of R we now apply Rr to another comparably segmented
image as outlined in figure 6. We apply Rr = R1 on I1 and observe a classification
quality of q1 = 0.33. Moreover, we observe that only the class ‘circle’ was correctly
classified. Hence, we adjust Rr to create R2 by adjusting the colour parameters until
q2 = qr = 1.0. The necessary adjustments are listed in table 1.

Figure 4. Reference image used to create a rule set to identify objects of type ‘triangle’, ‘circle’
and ‘square’.

 0.0

 1.0

 0.90 0.95 1.00

Square AND

ratio blue

 0.0

 1.0

 0.90 0.95 1.00

Triangle AND

ratio red

 0.0

 1.0

 0.90 0.95 1.00

Circle AND

ratio green

µ µ µ

Figure 5. Reference rule set to identify object classes as shown in figure 4.

Figure 6. Comparable image Ii with comparable segmentation to figure 4.
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7370 P. Hofmann et al.

Table 1. Listing of amount and types of adjustments to create rule set R2.

Type C Type O Type Fa Type Fb

– – Delete ‘ratio red’ in class ‘triangle’ –
Add ‘ratio blue’ in class ‘triangle’
Delete ‘ratio blue’ in class ‘square’
Add ‘ratio red’ in class ‘square’

� = 0 � = 0 � = 4 � = 0

Before adapting the rule set, its robustness concerning image I1 was at r1 =
q1 = 0.33. After adaptation the quality was at q2 = 1.0. This was obtained by the
adaptations depicted in table 1. We can now write for d1 = 4 and for r2 = 1/5 = 0.2.
However, it is easy to comprehend that for situations as outlined in figure 7, Rr and
R2 will fail and a new rule set R3 has to be developed, taking shape criteria rather
than colour criteria into account to distinguish the desired classes. In the present case

Figure 7. Comparable image I2 with comparable segmentation to Ir.

 0.0

 1.0

 0.90 0.95 1.00

Square AND

elliptic fit

 0.0

 1.0

 0.50 0.65 0.80

Triangle AND

elliptic fit

 0.0

 1.0

 0.90 0.90 1.00

Circle AND

elliptic fit

 µ  µ  µ

Figure 8. Adjusted rule set R3 describing the desired classes just by shape criteria.
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Robustness of fuzzy rule sets 7371

Table 2. Listing of amount and types of adjustments to create rule set R3.

Type C Type O Type Fa Type Fb

– – Delete ‘ratio red’ in class ‘triangle’ –
Delete ‘ratio blue’ in class ‘square’
Delete ‘ratio green’ in class ‘circle’
Add ‘elliptic fit’ in class ‘triangle’
Add ‘elliptic’ fit in class ‘circle’
Add ‘elliptic fit’ in class ‘square’

� = 0 � = 0 � = 6 � = 0

we have deleted all ratio properties and added for each class an appropriate member-
ship function for the shape property ‘elliptic fit’ (see Definiens 2004), which leads to a
deviation d2 = 6 but to a classification quality of q3 = 1.0 (figure 8 and table 2).

If we now apply R3 on the images I1 and Ir we observe for all images a classification
result with quality q3 = q4 = q5 = 1.0 without any adjustments concerning I2 and Ir;
that is d3 = d4 = 0.0 and therefore r3 = r4 = r = 1.0. That is, rule set R3 seems to
be most robust for the scope of detecting triangles, squares and circles in the artificial
images used here because for all images investigated until now the mean robustness r
was at r = 1.0. This value is greater than the mean robustness that could be achieved
with R1 and R2: 1/2(r1+r2) = 1/2(0.33 + 0.2) = 0.265.

5. Some empirical test-bed scenarios evaluating the robustness of rule sets

As indicated earlier, when developing rule sets for image analysis, there is usually little
known a priori about the whole variability of the rule set’s scope. Thus, assumptions
about the target classes are made and formalized accordingly during the development
stage (here through fuzzy rule sets). In this way the validity of these assumptions can
be verified in every case when applying the rule set to one or more reference image(s).
This is an iterative process because the rule set is permanently changed until an obvi-
ous maximum of classification quality is achieved (see Hofmann 2005, Leukert 2005).
‘Transferability’ and ‘robustness’ are then evaluated by applying the developed rule set
on the image data of the rule set’s scope on which it has not yet been applied.

5.1 Detecting informal settlements from very high resolution satellite images

In the following example a rule set is evaluated that was originally designed to identify
and extract informal settlements from high resolution multispectral satellite images
such as IKONOS and QuickBird. Thus, it was basically designed according to the
radiometric characteristics of these sensors. The reference rule set was developed using
an IKONOS scene from Cape Town, South Africa, acquired in March 2000. With
respect to the findings described in Hofmann et al. (2008b), critical object properties
for the class descriptions were avoided. The development strategy, design and structure
of the rule set followed the approach as depicted in Hofmann et al. (2008a). Applying
the reference rule set as described in table 3 on the reference image led to the results
shown in figure 9, with the quality described in table 4.

The rule set was then applied without any adaptations on a QuickBird scene from
Rio de Janeiro acquired in May 2002, which was segmented with respectively adapted
parameters, as described in Hofmann et al. (2008b). As expected, the quality of the
classification result was far below that achieved in the IKONOS scene (see table 4).
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Figure 9. Classification result for reference rule set applied on reference image: informal
settlements in Nyanga/Crossroads (Cape Flats, Cape Town, South Africa).

Table 4. Classification qualities achieved with reference rule set applied on reference image
(IKONOS) and QuickBird scene with adapted segmentation and adapted rule set.

Mean classification stability for
‘informal settlement’

Overall
accuracy

True
positives

False
positives

True positives
minus false

positives

IKONOS Reference rule set 0.80 0.92 0.84 0.08
QuickBird with

adapted
segmentation

Without adapted
rule set

0.00 – – –

With adapted rule
set

0.68 0.94 0.89 0.05

Consequently, the rule set was adapted to the situation in the QuickBird scene as
outlined in table 5 until a maximum quality for the classification was accomplished,
leading to the results depicted in figure 10 and table 4. The adaptations performed are
documented in table 5. According to equation (8), a deviation of d = 0 + 0 + 2 +
56.05 = 58.05 was measured. In conjunction with table 4 this leads to a robustness of
r = 0.014 for the quality criterion overall accuracy (OA) derived from an error matrix
as described in Lillesand and Kiefer (2000) and r = 0.011 for the quality criterion ‘dif-
ference of classification stability between true positives and false positives’ (see table 4).
Concerning the ‘classification stability’ of the true positives only, r = 0.017.
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Figure 10. Classification result with adapted rule set on QuickBird scene from Rio de Janeiro:
informal settlements (favellas) at the Ilha do Governador, Rio de Janeiro (Brazil).

5.2 Detecting urban green from very high resolution satellite images

In this second test-bed a rule set was developed to classify and differentiate urban
green areas in the city of Salzburg, Austria, based on a QuickBird scene from June
2005 (see Hölbling 2006). For our research the rule set was reapplied to a subset of
the QuickBird scene and an appropriate subset of an IKONOS scene from November
2008, covering the same area (see figure 11). For the QuickBird subset an OA (see §5.1)
of 0.77 could be achieved. To apply the rule set to the IKONOS scene, the initial seg-
mentation was adapted as described earlier. First, the original rule set was applied at
the segmented IKONOS scene, which led to a complete unclassified scene. Second, the
original rule set was adapted in the same way as described previously until a visually
convincing classification result was achieved. After applying the adapted rule set, its
deviations and robustness were measured. As depicted in table 6, from the 32 proper-
ties used for the IKONOS subset, 14 properties (deviations of type Fa) were added or
the principal type of the membership functions used for these properties was changed.
Additionally, 18 membership functions were shifted, compressed or stretched
(type Fb), which led to a deviation between the rule sets of d = 60.61. With this adapted
rule set, the classification had an OA of 0.53, which led to a final robustness of the rule
set of r = 0.011.

6. Discussing and interpreting rule set deviations

Besides the measurable deviation and robustness presented in tables 5 and 6, it is also
possible to analyse the deviation for each property, which helps to identify crucial
aspects of the rule set and to interpret possible reasons for these deviations. In our
first test-bed scenario (informal settlements), changes of type Fa (adding or removing
a membership function or changing the type of a membership function) took place
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Figure 11. Land cover classification result for QuickBird (left) and IKONOS (right) subsets
from Salzburg (Austria) for urban green mapping.

for the properties ‘relative area of vegetation sub-objects (1)’ (adding), describing the
class ‘informal settlement’ at the upper segmentation level, and ‘shape index’ (adding),
describing the class ‘bright small roofs/objects’ at the lower segmentation level. The
addition of ‘relative area of vegetation sub-objects (1)’ can be interpreted as a conse-
quence of differences in the general settlement structures between Rio de Janeiro and
Cape Town; although the percentage of vegetation in informal settlements in South
Africa is usually relatively low, it is in general higher in the favellas of Rio de Janeiro.
Nevertheless, the vegetation fraction is relatively lower in Rio de Janeiro’s favellas than
in other (formal) settlement areas in Rio. Thus, it became necessary to explicitly for-
mulate this difference of settlement structure accordingly in the rule set for the Rio
de Janeiro scene. A ‘shape index’ was added that describes the smoothness or rough-
ness of an object’s border within a value range of 1 (maximum smoothness) and ∞
(maximum roughness). This might instead be due to differences in the sensors; the
class ‘bright small roofs/objects’ acts as an indicating class for the objects at the upper
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Robustness of fuzzy rule sets 7377

Table 6. Deviations between rule sets to detect urban green from a QuickBird scene from May
2005 and an IKONOS scene from November 2008.

Deviations

Type Fb Type Fa

Class Property δv δa δF
Add/remove/

change

Forest GLCM contrast (all
directions)

– – – Add

Mean NIR 19.000 2.492 21.492 –
Standard deviation NIR – – – Change

Arable Compactness – 0.500 0.500 –
Mean red 0.829 0.167 0.995 –
Standard deviation NIR 0.937 0.118 1.054 –

Fallow Mean red 4.000 0.769 4.769 –
Waterbodies Mean green 0.000 0.406 0.406 –
River Mean green 1.500 1.191 2.691 –

Standard deviation blue – – – Add
Swimming pool Area (m2) – – – Change

Brightness 4.000 1.243 5.243 –
Compactness 0.000 0.077 0.077 –
Mean blue 0.968 0.465 1.433 –
Ratio red 1.000 0.156 1.156 –
NDVI – – – Add
Ratio NIR – – – Add
Standard deviation blue – – – Add
Standard deviation NIR – – – Add

Shadow Brightness 0.922 0.283 1.205 –
Shadow

(vegetation)
NDVI 0.000 0.909 0.909 –

Shadow (not
vegetation)

NDVI 0.000 0.909 0.909 –

Vegetation NDVI – – – Add
Ratio NIR – – – Remove

Non-vegetation NDVI – – – Add
Ratio NIR – – – Remove

Trees Existence of ‘forest’ (0) – – – Remove
Standard deviation NIR 1.000 0.556 1.556 –

Meadows Standard deviation NIR 0.333 0.217 0.551 –
Sports ground Ratio blue 0.934 0.391 1.325 –

Standard deviation blue 0.000 0.333 0.333 –
Meadow Standard deviation NIR – – – Add

segmentation level through the property ‘relative area of bright small roofs/objects’.
This property indicates the density of small buildings with a bright roof (or other small
and bright objects), which can be assumed not to be a typical dwelling of informal set-
tlements, such as a toolsheds or garage. Because of the higher spatial resolution of
the QuickBird sensor, the outlines of each object are depicted more precisely. Hence,
adding ‘shape index’ to the class description of ‘bright small roofs/objects’ enhances
the detection of objects of this class. Regarding the deviations of type Fb (shift and/or
stretch or compression of a membership function along the p-axis), the relatively high
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value of δF for the property ‘relative area of red roofs sub-objects (1)’ is notable. Its
contribution to the relative low values of d and r is explained by its high amount
towards d. That is, the high value of δF = 50.79 for the relative deviation of ‘relative
area of red roofs sub-objects (1)’ is equivalent to a contribution of 90.62% to the sum
of all deviations expressed by δF and to a contribution of 87.50% to the overall devia-
tion (d = 58.05) of the adapted rule set. This relatively high ratio of δF for the property
‘relative area of red roofs sub-objects (1)’ indicates that this property must be crucial in
terms of the rule set’s robustness. Thus, if it were possible to avoid using this property
or to exchange it with a more stable property, a higher robustness might be possible.
A possible reason for this outstanding deviation is that different materials were used
for building the dwellings; in South Africa materials such as metal or wooden sheets
combined with plastic materials are very common whereas in Brazil and especially
in Rio, clay and brick stones are more common. Therefore, revising the rule set by
taking into account different local contexts is a reasonable strategy. However, those
properties whose δF was at zero seem to be stable and therefore reusable for applica-
tions within the scope given; that is these properties with the selected values seem to
be most suitable for reapplying this rule set to detect informal settlements in IKONOS
and QuickBird images.

As the rule set of the second scenario (urban green) is relatively complex, we focus
our discussion only on changes. Most notable is the high number of deviations of type
Fa (table 6): for the classes ‘vegetation’ and ‘not vegetation’ the feature ‘ratio NIR’,
which describes the object-related relative brightness of the NIR channel against the
mean brightness, was replaced by ‘NDVI’, describing the mean value per-object of the
normalized difference vegetation index as described in Lillesand and Kiefer (2000). As
these exchanges do not affect the semantics of the rule set but enhance the separation
of ‘vegetation’ and ‘not vegetation’, these changes could also be weighted by zero.
This would reduce the deviation to d = 56.61 and increase the robustness to r = 0.012.
Furthermore, it is noteworthy that the classes ‘forest’, ‘river’, ‘swimming pool’ and
‘meadow’ were extended by the textural features ‘GLCM (contrast)’, which indicates
the contrast of an object based on the grey level co-occurrence matrix after Haralick
et al. (1973), and ‘standard deviation in the blue and/or NIR channel’. This indicates
that at least these classes are better detected (in the IKONOS image) by adding texture
features to the feature space. The feature ‘existence of ‘forest’ (0)’, which determines
whether or not there are objects of ‘forest’ in the direct neighbourhood of an object,
was removed for the class ‘trees’ because it turned out to be obsolete. Finally, the
description of ‘area (m2)’ of the class ‘swimming pool’ has been changed from a ‘fuzzy-
greater-than’ to a ‘fuzzy-lower-than’ function with appropriately changed values for α

and β. These two changes can also be interpreted as changes that do not affect the
principal semantics of the rule set and can therefore each be weighted by zero. We
would then obtain a deviation of d = 54.61 and a robustness of r = 0.013. Regarding
the deviations of type Fb, most of them can be interpreted as changes due to seasonal
effects. In particular, the relatively high measured deviation of ‘mean NIR’ in the class
‘forest’ is noted. This ‘fuzzy-greater-than’ function has been compressed and shifted
by changing its range from 500–600 to 155–160. For the case this seasonal effect could
be eliminated by the rule set; for example, in terms of an automatic adjustment of
the value range with respect to the season, the deviation was at d = 33.12 and the
robustness at r = 0.02.
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Robustness of fuzzy rule sets 7379

7. Conclusions

The method introduced enables the evaluation of the robustness of (fuzzy) rule sets for
a defined scope through comprehensive and objectively measurable values. Thereby,
the two criteria achievable classification quality and amount of deviation from a
reference rule set are the determining factors for the evaluation. An approach to quan-
tify the robustness against quality and deviation is introduced (§3) and applied to an
artificial example (§4) and to two real-world test-beds (§5). We have demonstrated how
crucial elements of a fuzzy rule set can be identified and how the observable deviations
of a rule set can be evaluated and interpreted (§6). These capabilities open new avenues
for future rule-base designs aimed at transferable classification applications in large
production environments with several or even hundreds of images.
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