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An Object-Based Workflow to Extract Landforms at
Multiple Scales From Two Distinct Data Types

S. d’Oleire-Oltmanns, C. Eisank, L. Drăgut, and T. Blaschke

Abstract—Landform mapping is more important than ever be-
fore, yet the automatic recognition of specific landforms remains
difficult. Object-based image analysis (OBIA) steps out as one
of the most promising techniques for tackling this issue. Using
the OBIA approach, in this study, a multiscale mapping work-
flow is developed and applied to two different input data sets:
aerial photographs and digital elevation models. Optical data
are used for gully mapping on a very local scale, while terrain
data are employed for drumlin mapping on a slightly broader
scale. After a multiresolution segmentation, a knowledge-based
classification approach was developed for the multiscale mapping
of targeted landforms. To identify well-suited scale levels for data
segmentation, the estimation-of-scale-parameter tool was applied.
Contrast information and shape properties of segments were
implemented for gully classification. Contextual and shape in-
formation was utilized for mapping drumlins. An accuracy as-
sessment was performed by comparing classification results with
independent reference data sets that were delineated manually
from the input data. We achieved satisfactory agreements between
mapped and reference landforms. Knowledge-based identification
of segment features improves both accuracy and transferability of
the classification system.

Index Terms—Drumlin, estimation of scale parameter (ESP),
gully, landform classification, multiscale, object-based image anal-
ysis (OBIA), segmentation, unmanned aerial vehicle (UAV).

I. INTRODUCTION

D IGITAL landform mapping is the process of deriving
landform information from digital data such as digital ele-

vation models (DEMs), satellite images, and aerial photographs
[1]. Due to the ever increasing spatial resolutions, too much
detail may be represented in the data [2], which results in noise
at the landform scale. Therefore, researchers began to think
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about redefining the basic spatial unit for landform modeling
from cells to segments (or objects), particularly for DEM-based
studies [3]–[5].

Assuming that landforms can be associated with segments as
collections of adjacent cells with similar values, object-based
image analysis (OBIA) becomes a valuable approach to their
mapping [6]. Generally, OBIA involves two steps: segmenta-
tion and classification. A widely used algorithm for deriving
homogeneous segments from input scenes is multiresolution
segmentation (MRS) [7], [8]. The resulting segments present
more realistic processing units than cells and can be created
in a multiscale structure. Once the segments are delineated,
classification rules are applied to map each segment to the
landform concept to which it comes closest [5], [9].

In OBIA, knowledge-based landform classifications have
been employed on DEMs [10], satellite images [11], and com-
binations of the two [1]. Recently, Kim et al. [12] have utilized
OBIA for mapping vegetation, channels, and bare mud from
very high spatial resolution images.

One main issue in OBIA is to transfer the implicit knowledge
of an expert into machine-understandable classification rules
[2]. This also applies to landform mapping as a particular case
of OBIA. Due to a lack of comprehensive knowledge models,
the current strategies (e.g., those in [10] and [11]) for defin-
ing the landform classification rules are still quite subjective
and mainly based on trial and error. Thus, the classification
process is time consuming, and the rules are tailored to the
underlying data.

This letter presents a methodology that allows for a more
objective and faster mapping of landforms with OBIA. The
methodology combines a statistical procedure to make mul-
tiscale segmentation self-adaptive to the input data and a
knowledge-based selection of the most transferable properties
to be used in the classification. The method is applied to two
distinct cases: mapping gullies from aerial photographs and
drumlins from DEMs.

II. METHODOLOGY

The general approach for mapping gullies and drumlins
comprises three steps: 1) statistical optimization of MRS;
2) knowledge-based classification; and 3) accuracy assessment.

First, MRS was applied in order to partition the input scenes
into segments that could be directly related to targeted land-
forms in terms of size and shape. Due to size variations of the
target landforms, one cannot expect their accurate delineation
as single objects at only one segmentation scale. Therefore,
multiple segmentation levels were generated for a specific
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scene with the estimation-of-scale-parameter (ESP) tool [13].
The resulting local variance graphs indicated the statistically
significant scales for MRS. Once segmentation was optimized,
knowledge-based rules were employed to classify the resulting
segments into targeted landforms. The classification results
were quantitatively compared with independent reference data.

The two case studies for mapping drumlins from DEMs and
gullies from aerial photographs are described in detail in the
following sections.

A. Drumlins

The central part of the “Eberfinger Drumlinfield,” situated in
Bavaria, Germany, was chosen as the test area for automated
drumlin delimitation. The selected site is 5.2 × 7.8 km in
size and contains 114 drumlins. The interplay of erosion and
accumulation processes during the Last Glacial Maximum led
to the formation of the drumlin field [14]. Ideally, a drumlin
exhibits elliptical shape in planar view and Gaussian shape
in profile view [15]. However, due to postglacial overprinting,
some drumlins show significant deviations from the ideal form.

DEMs have been reported to be the most valuable database
for the digital mapping of drumlins [16]. Ideally, the spatial
resolution of the DEM should be at least 10 m or finer [17]. For
the present study, a LiDAR-derived DEM at a spatial resolution
of 5 m was utilized. The LiDAR data were acquired with a
mean point density of 1.29/m2 during flight campaigns between
November 2009 and April 2010. To produce the gridded 5-m
DEM, the elevations of the true ground points were interpolated
by using a method that adapts to terrain type, as implemented
in the software SCOP++.

To select well-suited input layers for segmentation, we
checked the literature for terrain layers that have successfully
been used in manual approaches [18], [19]. One of the few
reported options was a normalized relative elevation layer that
was calculated from a procedure known as “residual relief
separation” [20]. Residual relief separation involves several
DEM filtering steps to increase local contrasts in elevation and
thus emphasizes drumlin topographies. Values range from zero
to one, whereby higher values indicate high local elevation dif-
ferences, which can be associated with drumlins. More details
are provided in [20].

Application of the ESP tool to the relative elevation layer
yielded four significant segmentation levels at scales 6, 9,
12, and 15. These levels provided the basic segments for
the subsequent knowledge-based classification of drumlins.
Therefore, qualitative descriptions and definitions of the term
“drumlin” were transferred into machine-understandable rules.
For instance, drumlins were described as “multiconvex units
that have an elliptic and elongated planar shape” [15]. These
properties were modeled in an OBIA environment by positive
values in “mean curvature” of segments, as well as by high
segment values of “elliptic fit” and “elongation.” In addition,
a contextual feature, ensuring that the drumlin segment was
higher than its neighbor segments, was implemented. The same
class system was then employed to each of the four detected
segmentation levels of the relative elevation layer. The four
individual classifications were merged at the finest level to

produce the final map of drumlins. Since the classified segments
systematically underestimated the size of the actual drumlins, a
resizing operation was performed. Grid cells that were adjacent
to a segment classified as drumlin and with a slope value above
6◦ were added to the respective segment.

B. Gullies

Aerial photographs were used as input data. The acquisition
of the aerial photographs (RGB color) has been taking place
annually during several field campaigns in the Souss Basin,
Morocco, since autumn 2010 [21].

The image mosaic was generated from data acquired in
autumn 2010. For data acquisition, a calibrated digital system
camera was utilized. Aerotriangulation using bundle block ad-
justment of these annually acquired very high resolution aerial
photographs (i.e., around 0.03 m × 0.03 m) delivers image
block bonds which are used for creating image mosaics as well
as for extracting precise DEMs as described in [22].

The image mosaic is 220 m long and 170 m wide, resulting
in coverage of 3.74 ha. It contains two ephemeral gullies which
are located next to a settlement area. Details on the study area
in Morocco as well as further technical details are given in [21].

The delineation of gullies is challenging due to their hetero-
geneous morphologic characteristics [23]. Hence, the high level
of detail present within the aerial photographs is considered
to be valuable and necessary for an OBIA approach to gully
mapping.

Two main scale levels, 500 and 100, were identified after the
image mosaic was analyzed with the ESP tool. Initially, the
larger scale parameter was applied to the mosaic to follow
the principles of a top-down approach. Parameter values for the
MRS were set to 0.1 for shape and 0.5 for compactness. These
settings prioritize color over shape.

For the knowledge-based classification, a rule set
was developed using features which were—in the ideal
case—independent from the location of the input data. The
main features used for a coarse classification at level 500
were “border contrast” and “edge contrast of neighbor pixels.”
Both features were combined to a contrast feature (CF). The
CF builds the sum of the squared value of “edge contrast of
neighbor pixels” and the square root of “border contrast” and
is denoted as

CF=
√
border contrast+(edge contrast of neighbor pixels)2.

This index supports separation between plane areas and gul-
lies by high differences in CF values. The coarse classification
was then segmented with a lower scale value of 100. In addition
to CF, “segment size” and “roundness” were chosen to refine
the gully classification at this more detailed level. The final
gully map was generated by intersecting the coarse and detailed
gully classifications.

C. Accuracy Assessment

For both input data sets, independent reference data sets were
created. Outlines of the drumlins were delineated manually on a
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shaded relief layer that combined four different directions [19],
thus providing the digital reference map.

The extents of gullies were digitized based on a slope layer
and the image mosaic. The slope layer was computed from a
photogrammetrically derived DSM.

For both case studies, gullies and drumlins, the accuracy
assessment was based on the following three measures:

1) user’s accuracy (UA), the percentage of correctly classi-
fied area from the total classified area;

2) producer’s accuracy (PA), the percentage of correctly
classified area from the total reference;

3) detection rate, the percentage of reference data that have
been detected by the classification (also including partial
detection).

III. RESULTS

The two landform mapping efforts showed acceptable re-
sults. However, the ideal case where landforms correspond
to single segments was hard to achieve, particularly in cases
where landform boundaries were obscured in the data (e.g., by
vegetation).

A. Drumlins

Segmentation levels at the four ESP-detected scales included
terrain segments with varying degrees of homogeneity in rel-
ative elevation. As the scale increased, more heterogeneity in
relative elevation was added to the segments. Thus, terrain
segments at the scale of 15 were far larger than segments at
scale 6. When aiming at delineating target features as individual
segments, this is an important property, particularly when target
landforms are largely variable in size, as it is the case for the
observed drumlins in our test area. A visual check proved that,
at each scale, a group of similar-sized drumlins was approxi-
mated by individual segments. Those segments could therefore
also be addressed by shape features such as “elongation” and
“elliptic fit” in the classification. At each of the four levels,
different drumlins—depending on their size—were classified.
The merged drumlin classification map is displayed in Fig. 1.
As illustrated by the three color-coded insets, the spatial extents
of individual segments and reference drumlins matched well
(green) in several cases. However, there were also some cases
where the classified drumlin segments either overrepresented
(red) or underrepresented (yellow) the extents of reference
drumlins.

B. Gullies

Results are illustrated in Fig. 2. The left image illustrates the
classification results (pink polygons) as well as the reference
polygon data (black outlines) with the image mosaic as a
base layer. The three color-coded insets on the right present
some examples of good matches, as well as over- and under-
estimations. Most parts of the two main gully systems were
classified. Furthermore, numerous lateral rills were mapped.
The green inset shows a good match between classified gully
segments and the reference polygon data. In the figure, the

Fig. 1. Classification results for (pink polygons) drumlins and (black outlines)
the reference drumlin polygons are illustrated. A shaded relief layer is displayed
in the background. Three color-coded insets show examples of (green) good
matches between classification and reference, (yellow) underestimations of
reference, and (red) overestimations of reference.

Fig. 2. Classification results for (pink polygons) gullies and (black) the
reference polygon data are illustrated. The image mosaic is displayed in the
background. Three color-coded insets show (green) a good match between
classification and reference, (yellow) underestimation of reference, and (red)
overestimation of reference.

yellow inset illustrates a case of underrepresentation of gully
classification, and finally, the red inset depicts an example
where the classification overestimated the reference polygon
data. Visual comparison of segments at the two chosen scale
levels confirmed that, on the lower scale level, the gully shape



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

TABLE I
ACCURACY VALUES OF BOTH MAPPING APPROACHES

was delineated more precisely obverse the surrounding plane
surfaces.

C. Accuracy Assessment

The values of classification accuracies are given in Table I.
For each mapping approach, the UA, PA, and detection rate
were calculated.

A quantitative comparison to the reference map showed that,
from the 114 reference drumlins, 100 were at least partially
extracted by the multiscale OBIA classification, resulting in a
detection rate of 87.7%. PA for the drumlin classification was
calculated with 61.1%. UA issued a value of 58.3%.

Comparing the gully mapping results with the reference data
set, UA amounted to 57.1%. PA reached 38.9%. The overall
detection rate resulted in a value of 67.2%.

IV. DISCUSSION

Digital landform mapping can be conducted on different
data. Optical data such as satellite images and aerial pho-
tographs often contain varying (spectral) values for different
scenes due to differences in the lighting situation and, therefore,
larger or smaller differences in contrasts. DEMs are less af-
fected by such variations and are thus more comparable across
scenes (at least for similar spatial resolutions). This may be
helpful for developing a solution to the existing demand for
reproducible digital mapping approaches to establish standards
that subsequently support the progress of geomorphological
mapping [24]. Therefore, a main goal in landform classification
using OBIA is to transfer and optimize the objectlike perception
of human recognition into segmentation algorithms and further
into classification rules.

In terms of segmentation, this means to produce single
segments within the limits of physical landforms, a procedure
that is known as “landform delimitation” [25]. This is relatively
difficult to achieve when using the MRS algorithm. In the
case of drumlins, despite the knowledge-based selection of an
optimal segmentation layer, i.e., relative elevation, the MRS
results demonstrate the difficulty in detecting the exact limits
of drumlins. Only sometimes, segments approximate reference
drumlins quite well. Also, the rather complex shape of gullies
is only partially matched by single segments, whereas a group
of smaller segments better fits the shape of gullies. The ESP
tool supports the detection of the statistically most significant
segmentation scales for the underlying data. This does not

imply that the resulting segments correspond to the size and
shape of the actual landforms. Only recently, a supervised
approach for optimizing MRS has been proposed which deter-
mines the best fitting terrain segments for selected reference
geomorphological units based on the similarity of frequency
distributions [26].

In terms of landform classification, distinct operational defi-
nitions that mainly include absolute statements, i.e., statements
that can consistently be applied in practice, are required in order
to increase the quality of the resulting maps [25]. In particular,
statements about the shape and spatial context (neighbor and
hierarchical relations) seem to be better suited, rather than
spectral or morphometric information [9]. Shape and context
features were thus the first choice for developing our
knowledge-based landform classification routines in OBIA. Re-
gardless of the underlying data type, namely, aerial photographs
or DEMs, we reached reasonable accuracies for the resulting
landform maps.

The achieved accuracy values indicate that the two different
data types are not equally suited for landform mapping. UA
and PA of the drumlin map indicate that a similar amount of
over- and underestimations was generated by the knowledge-
based classification system. However, 87.72% of drumlins have
been at least partially detected by the classification. This is a
similar percentage as obtained in [27] in their study on drumlin
mapping with OBIA. In contrast to our unsupervised method,
the approach in [27] is rather manual, as statistics on reference
drumlins were manually analyzed to find the optimal features
and thresholds for informing the class system. Thus, we con-
sider our approach to be much faster and more transferable.
For gullies, the resulting value of UA of 57.08% is similar to
the resulting UA of 67% for channels in [12]. This indicates
also the amount of overestimation. The value obtained for the
PA is 38.94%. The detection rate is at 67.15%. The existing
imbalance of over- and underestimations may be explained by
two points: On the one hand, numerous anthropogenic rills
appeared in addition to the gullies within the chosen study
area which makes a complete differentiation of these two types
of incisions almost impossible, and on the other hand, several
gullies were obscured by vegetation. These gullies were hard
to interpret visually and were not included in the manual
reference. The reference therefore clearly underestimated the
real gully extents. This issue has been acknowledged to chal-
lenge the validation of gullies. However, better transferability
is ensured by a certain degree of underestimation [28].

Applying the presented workflow to larger areas would still
deliver suitable results. The ESP tool for optimizing segmenta-
tion is flexible not only against data type but also against data
scales. However, for the classification, it might be necessary
to define additional rules, since the probability of class ambi-
guities is higher when larger areas are analyzed. For instance,
the rules for classifying drumlins might be also fulfilled by
similarly shaped landforms like ridges.

Recently, the definition of semantic models has been pro-
posed to make landform knowledge explicit, thus support-
ing the selection of input data and classification features for
landform mapping in OBIA [29]. However, the vagueness of
some landform terms is problematic and hinders their exact
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specification [10]. Moreover, some landforms cannot be pre-
cisely defined at a given point in time. For instance, the extents
of gullies constantly change due to ongoing erosive processes.
Therefore, attempts of semiautomated mapping landforms such
as gullies and drumlins are still rare. This letter presents only
the second approach to drumlin classification using OBIA (next
to [27]) and the very first attempt of gully mapping on aerial
photographs using OBIA.

V. CONCLUSION

In this study, a three-step methodology was applied in OBIA
to map two distinct types of landforms in remote sensing data:
gullies in unmanned-aerial-vehicle-derived aerial images and
drumlins in DEMs. The methodology consists of the follow-
ing: 1) a statistical optimization of MRS; 2) knowledge-based
classification; and 3) accuracy assessment against a reference
map. The approach turned out to be more objective and faster
than previous ones.

For both data types, the application of the ESP tool proved
to provide good segmentation scales, although individual seg-
ments only sometimes matched the size of targeted landforms.
Accuracy values suggest that landform classification systems
which predominantly rely on shape and context criteria deliver
satisfactory results, independent of the underlying data. Most
gullies and drumlins were at least partially mapped. For drum-
lins, similar amounts of over- and underestimated areas were
observed. For gullies, the overestimated area was smaller than
the underestimated one.
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