Prototype: Energy system optimization with RIVUS

Research Studios Austria iSPACE.SmartEnergyBalances

as a basis for sustainable planning for communities

HEAT-App District Heat

Parameter Setting

•							
District heat energy cost	Alternative energy cost	Base heat pipe cost	Limit district heat capacity	Energy loss fix	Energy loss variable	Energy demand scaling	Existing heat pipes share
[€/kWh]	[€/kWh]	[€/m]	[MW]	[kW/m]	[%/m]	[%]	[%]
0.035	0.07	50	No Limit	0.006	0.008	100	10
0.045	0.07	50	No Limit	0.006	0.008	100	10
	District heat energy cost [€/kWh] 0.035 0.045	District heat energy cost Alternative energy cost [€/kWh] [€/kWh] 0.035 0.07 0.045 0.07	District heat energy cost Alternative energy cost Base heat pipe cost [6/W/h] [6/W/h] [6/m] 0.035 0.07 50 0.045 0.07 50	District heat energy cost Alternative energy cost Base heat pipe cost Limit district heat capacity [e/kWh] [e/kWh] [e/m] [MW] 0.035 0.07 50 No Limit 0.045 0.07 50 No Limit	District heat energy cost Alternative energy cost Base heat pipe cost Limit district heat capacity Energy loss fix [6/kWh] [6/kWh] [6/m] [MV/J] [kW/m] 0.035 0.07 50 No Limit 0.006 0.045 0.07 50 No Limit 0.006	District heat energy cost Alternative energy cost Base heat pipe cost Limit district heat capacity Energy loss fix Energy loss variable [e/kWh] [e/kWh] [e/m] [MW] [kW/m] [%m] 0.035 0.07 50 No Limit 0.006 0.008 0.045 0.07 50 No Limit 0.006 0.008	District heat energy cost Alternative energy cost Base heat pipe cost Limit district heat capacity Energy loss fix Energy loss variable Energy demand scaling [e/kWh] [e/kWh] [e/m] [MW] [kW/m] [%m] [%] 0.035 0.07 50 No Limit 0.006 0.008 100 0.045 0.07 50 No Limit 0.006 0.008 100

Cost/Year

III. 3: Cumulative investment and operating costs as well as primary energy input per energy source for a respective system parameterization.

Primary Energy Demand

III. 1: Parameterization of two

comparative system setups for

a local/regional heat supply

scenario.

Background

The sustainable transformation of regional heat supply systems is one of the essential pillars of a CO2 neutral energy supply. However, the realization of strategies in local actions is sometimes linked to complex decisionmaking processes, especially when it comes to an investment in a grid-bound supply.

Method

With the combination of spatial analysis and mathematical optimization, scenarios of an optimal heat supply are determined. The heat supply on object level with the geographical location and a possible route for a netbound supply is used as basis for this.

Goal

-

- Quick and uncomplicated determination of supply scenarios as the basis for a decision for a sustainable supply
- Closing the gap between strategic guidelines and local planning processes
- Transparency in showing sensitivities of individual optimal system setups with regard to variations in parameter settings

Innovation

- Combination of GIS analyses with mathematical optimization
- Interactive web interface for broad and easy use in different stakeholder circles.

Benefits

- Complete acquisition of the supply system on object and route level
- Identification of possible optimal treatment setups under given conditions

Demonstration

- Prototype developed in the project IDEE in INTERREG AT-IT
- Provision for the communities of the Salzburg Lake District
- Provision for the municipalities of Maniago and Feltre in Italy
- Integration and application in ERA process for the project Berchtesgadener Strasse in Salzburg
- Available online at https://ispacevm42.researchstudio.at/heatapp/districtheat

Publication

Hofsäß, F. (2018): Grid based energy system setup optimisation with RIVUS in dedicated regions. International Sustainable
Energy Conference 2018, 67-76.
10.32638/proceedings.isec2018.201813

R S A F G Research Studio iSPACE